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Result

People fail to notice
that the room is
changing size (eg by
a factor of 4).




RELATIONS IN 3D SCENES: CHANGE BLINDNESS

Proprioceptive
‘global’ signal
not visual

Participants do not notice this expansion/contraction



RELATIONS IN 3D SCENES: CHANGE BLINDNESS

Change localization task




RELATIONS IN 3D SCENES: CHANGE BLINDNESS

Previously
» Low overall performance in change localisation task -> internal representation

can not be easily queried for exact positions
» Task-irrelevant relational information disrupts performance

* Not due to grouping or image change alone (colour grouping) 6_@

How important is relative, as opposed to absolute movement?



RELATIONS IN 3D SCENES: MODELLING

Relative importance of “global” vs “relative” signals

Single sphere display

Multiple spheres display

Single static sphere Single moving sphere
! U T
Y ,
AN W\

88 " O
& & &8

>
Response of target detector

We consider 2 types of underlying
signal:

* Global: individual sphere movement
* Relative: movement relative to
other spheres

We are looking for the combination of
global and relative signals that give the
best model fit.
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Relative importance of “global” vs “relative” signals
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RELATIONS IN 3D SCENES: MODELLING

Relative importance of “global” vs “relative” signals
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Relative importance of “global” vs “relative” signals
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RELATIONS IN 3D SCENES: MODELLING

Relative importance of “global” vs “relative” signals
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Rplltive Signal

RELATIONS IN 3D SCENES: MODELLING

Relative importance of “global” vs “relative” signals

$1 S2

Conclusions

T Relative signal has a stronger
influence

Rplltivo Sigp_al

 All participants show some
sensitivity to the global signal

» Considering these signals

m separately is different from an

approach based on 3D
§-  reconstruction
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FISH GILLS AND FACES
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Copyright University of Reading LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT



University of
‘ 0 . @Readit:;g
More ‘human-like’ reinforcement learning

Computer vision approaches have focused primarily on recognizing objects and simple actions using small
image patches to train classifiers. These approaches do not take advantage of supporting contextual
information in the broader scene, or knowledge of the world, and are tha&nefTicient, brittle and inaccurate >
for natural images in particular. For humans, however, scene understanding 1s a simple task. One reason
for this 1s that humans possess what we call visual commonsense, that is, the ability to rapidly understand
complex scenes without much deliberation using their knowledge and contextual reasoning consistent with
the available information.

Today
* Question: what RL would have to do to be more

‘human-like’?

« Answer: build up tasks gradually (hierarchically)
and add dimensions as the system learns new
tasks
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More ‘human-like’ reinforcement learning

‘brittle, inefficient and inaccurate’

School bus

Ostrich

e completely non-human-like basis vectors
* how should RL learn human-like basis vectors?



‘Could be a predator: prepare’
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i.e. perception as well as action
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Adding dimensions as tasks evolve

/

l

Hypothesis: only
add a dimension
when it is
evolutionarily
advantageous to
split an existing
policy into two.

| Policy 1

/

early learning

Lower dimensional hyperplane
corresponding to dimensions of

7

/

Two different policies can be
learned that correspond to the
same feature vector in a lower
dimensional space

@ University of
Reading

| Policy 2

Early in learning (low dimensional space:

higher dimensions not yet invented)

Late in learning (higher dimensions used
to split categories hierarchically)



Contexts for action/policies over
the first 200ms of seeing a face

(Phillipe spoke yesterday...)

# W far | 4wy
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Action: Action: Action:
orient towards definite face; identify individual;
possible face identity? shift gaze to help

with next question
|

@ University of
Reading

It is tempting to
speculate that
perception
recapitulates
evolution -
reinforcement
learning does not
seem to do that
(eg
ostrich/schoolbus)

|
Early in learning OR

early in perception, eg 10ms exposure

Late in learning OR
late in perception, eg 200ms
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Learning appropriate basis vectors: & Reading

categorization

Action:
“Anold pot”

Action:

“A delftware

pharmaceutical

pOtH

Action:
“...anditis 18th
Century and English”

|
Early in learning OR

early in categorization process

I >
Late in learning OR
late in categorization process
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Learning appropriate basis vectors: Reading
evolution

Action:
chemotaxis;
phototaxis
| | g
Early in learning (low dimensional: Late in learning (higher dimensions used

higher dimensions not yet invented) to split categories hierarchically)
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Learning appropriate basis vectors: 2 Reading
evolution

Action: Action:
chemotaxis; lots;
phototaxis still no brain
l | >
Early in learning (low dimensional: Late in learning (higher dimensions used

higher dimensions not yet invented) to split categories hierarchically)



. . . Universi.ty of
Learning appropriate basis vectors: 2 Reading
evolution

Action: Action: Action:
chemotaxis; lots; need not be overt
phototaxis still no brain movements
| | g
Early in learning (low dimensional space: Late in learning (higher dimensions used

higher dimensions not yet invented) to split categories hierarchically)
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Learning appropriate basis vectors: 2 Reading
action

Action: Action; Action:
move proximal extend limb guide hand
muscles
I | >
Early in learning OR Late in learning OR

early in the action late in the action



Cortical arca |1 (FO) (b) Cortical area 2 (HO) (¢) Cortical area 3 (HO) @ University of

Reading

gh thalamus to cortex
s that our perceptual
... Whatever the

1y or all inputs

“that also target motor

29
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HO fe.g., Pulvinar)

Currert Opinion In Newsobiclogy



What s left to do?

@ University of
Reading
Mark

Edmonds

Easy (or Given)

Hard

Physics Engine

Learning representation
of environment

Transfer learning

Computing representation
of current environment

Task inclusion

Similar to known
capacities of brains

RL

Computing representation
of current environment

Task inclusion

Learning representation
of environment

) You guys keep on
Transfer learning doing more of this

. 29
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More ‘human-like’ reinforcement learning

Yesterday:
how human 3D vision might be based on a set of policies
some examples of hierarchical learning, eg navigating a maze

Today
« Question: what RL would have to do to be more

‘human-like’?

« Answer: build up tasks gradually (hierarchically)
and add dimensions as the system learns new
tasks (to get more ‘human-like’ basis vectors)

« lam not qualified to discuss the literature but incremental learning
isrelevant, e.g.
«  Chaudry, Dokania, Ajanthan, Torr (2018) arXiv:1801.10112
« Wang,Y.X,Ramanan, D., & Hebert, M. Growing a brain: Fine-
tuning by increasing model capacity. CVPR 2017.
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View in View in @ University of
small room large room Reading

a9 ¢

- <

/’7
( ’
Room scale
-
\

Distance (m)



University of
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People fail to notice
that the room is
changing size (eg by
a factor of 4).




An X University of
expected path across - n i
sensory space

O Firing rates

Synaptic
weights

Marr (1969); Albus (1971)
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sensory space
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O Firing rates

Synaptic
weights

Marr (1969); Albus (1971)



An expected path across R niversiyof
sensory space

Reading

O Firing rates

Synaptic
---------- weights

Marr (1969); Albus (1971)
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expected path across - n i
sensory space

O Firing rates

Path in static
room

, Synaptic
.......... weights

Marr (1969); Albus (1971)
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expected path across - n i
sensory space

Path in expanding room
(proprioceptive
information differs)

New red dot (practiced
observer)

O Firing rates

Path in static
room

/ Synaptic
e weights

Marr (1969); Albus (1971)



] @ University of
Learning Reading

Path in expanding room
(proprioceptive
information differs)

New red dot (practiced
observer)

O Firing rates

Path in static
room

/ Synaptic
e weights

Marr (1969); Albus (1971)



