

Andrew Glennerster

Copyright University of Reading

Experiments

Alex Muryy

Phil Torr

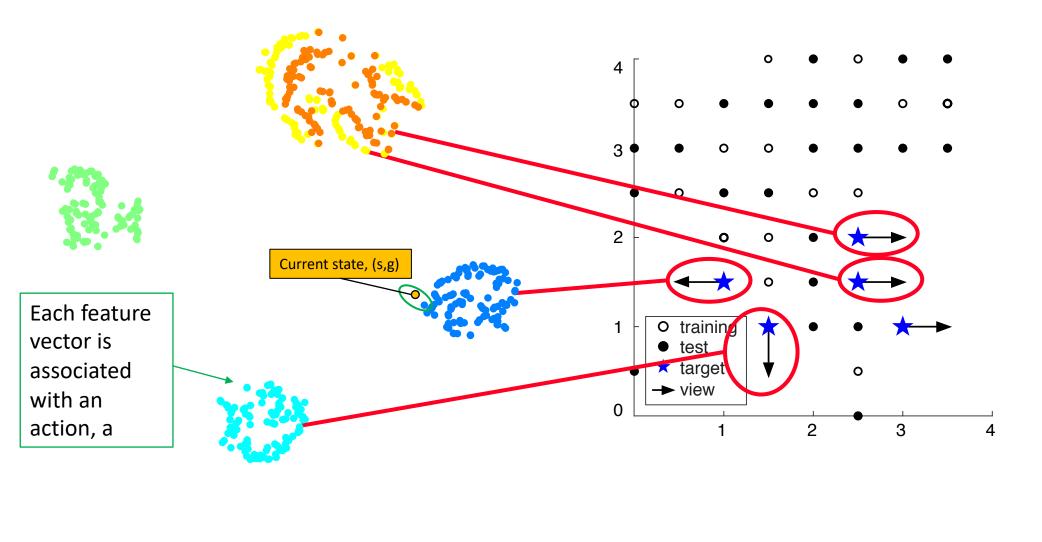
N. Siddharth

Nantas Nardelli



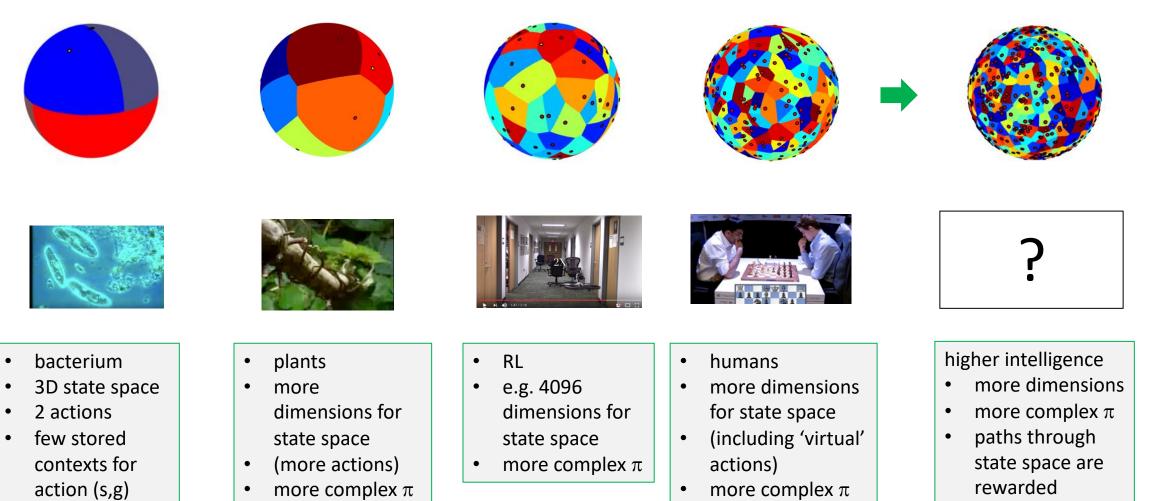
Mark Edmonds

$\pi(a|s,g)$ for navigation



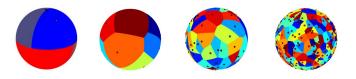
- Zhu et al (2016)
- tSNE shows projection of feature vectors (s,g)
- g dominates

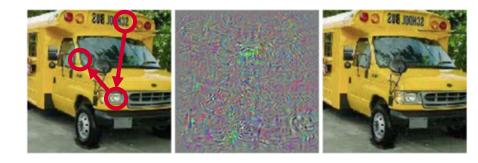
Evolution of $\pi(a|s,g)$

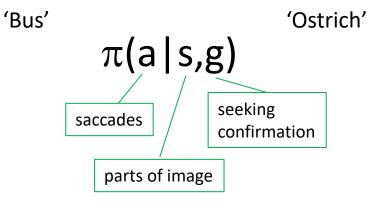


Behzad's question:

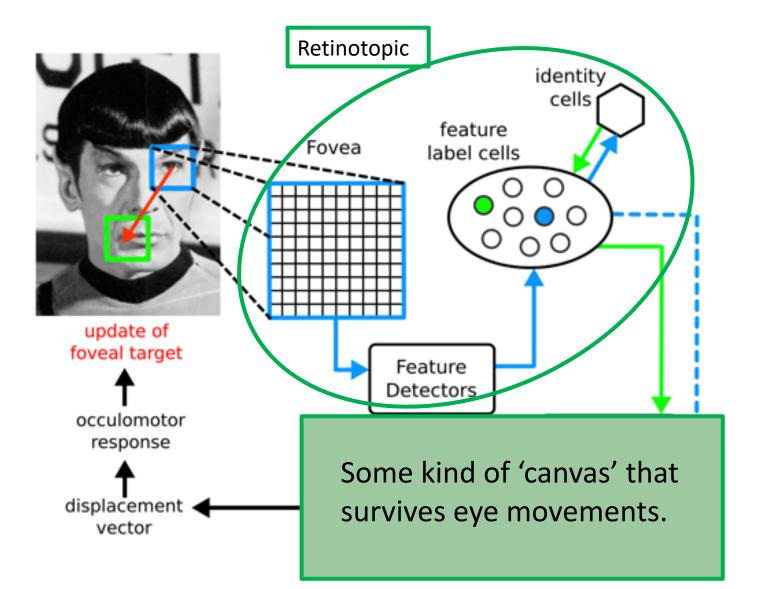
- What are computer vision/reinforcement learning researchers doing wrong?
 - Using the wrong basis set
 - Often trying to do one-shot recognition
 - Task should be integral to recognition
- 3D vision as an example
 - stereoacuity with a moving eye
 - up to navigation
 - avoiding 3D coordinate frames
 - experiment in VR

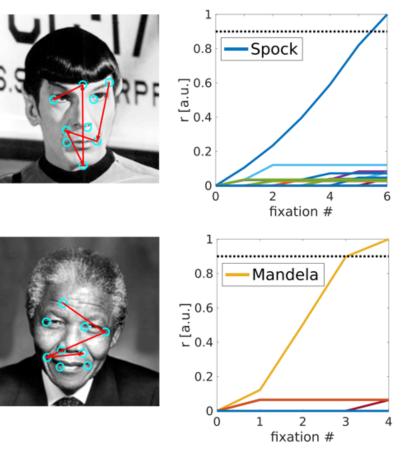




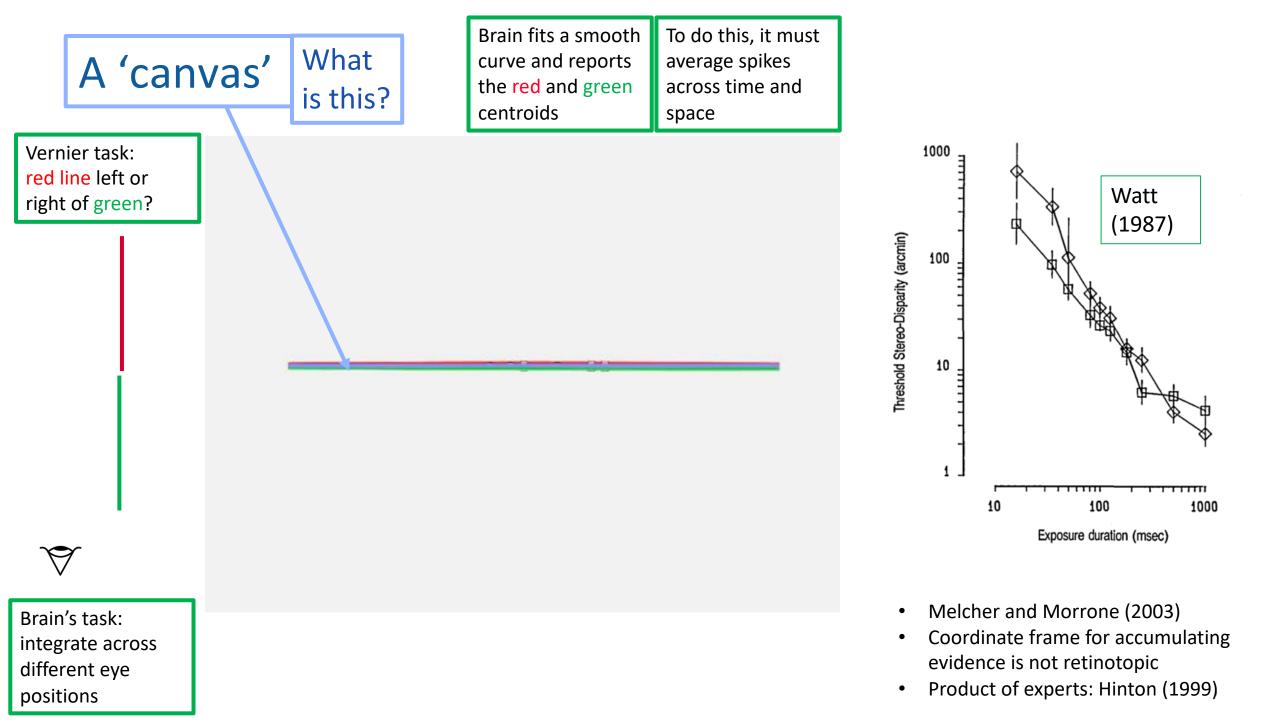


$\pi(a|s,g)$ for face recognition



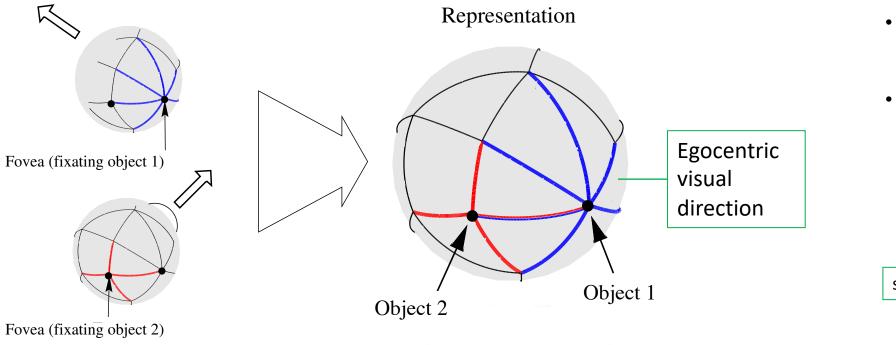


- The 'canvas' can be a policy network
- Bicanski and Burgess (2019)
- Bill Triggs: 'necessary'

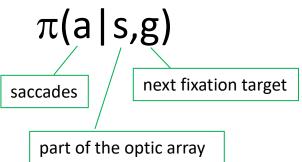


A 'canvas' surrounding the camera

Two eye positions



- Extend the 'canvas' all the way around the camera.
- An egocentric representation of direction

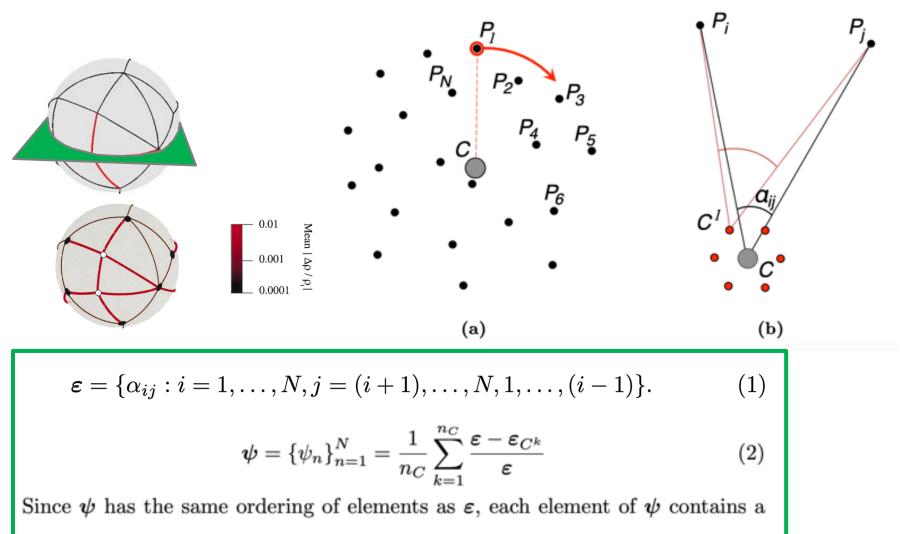


 Glennerster, Hansard and Fitzgibbon (2001, 2009), optic flow in fixating observers

Hierarchical, compositional encoding of location

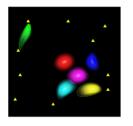
Muryy, Siddharth, Nardelli, Glennerster and Torr (2020)

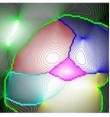
Hierarchical, compositional encoding of location



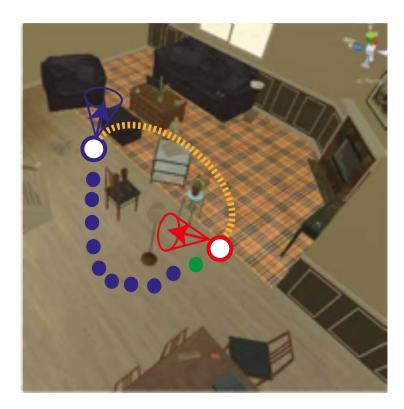
parallax-related measure referring to that particular pair of points.

- The 'visual image' (£) is a vector listing all the angles (N²) between all N visible points.
- For each angle, we also calculate a measure of parallax. If P_i and P_j are both distant, this parallax will be small.
- Muryy et al (2020) and Glennerster, Hansard and Fitzgibbon (2001)



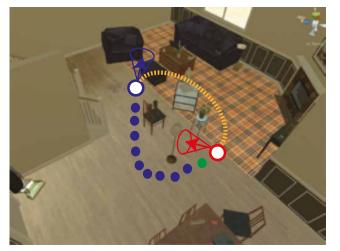


1



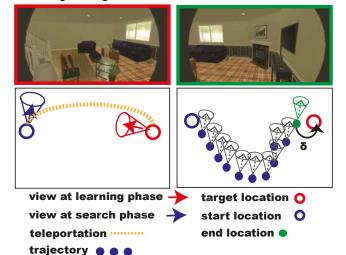
GO TO START

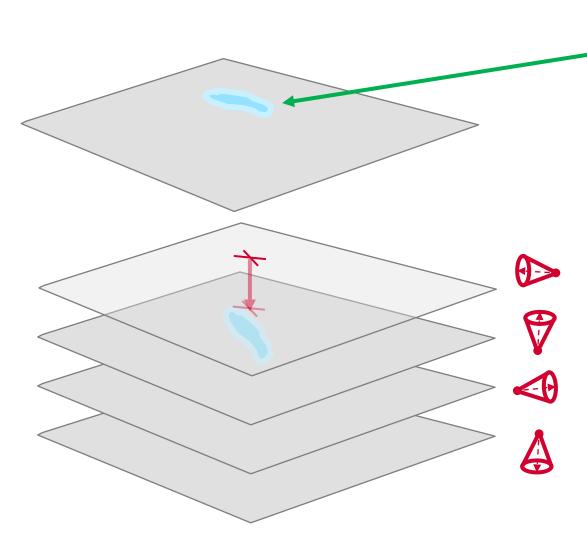
and the state

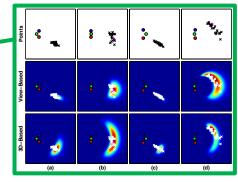


original target view

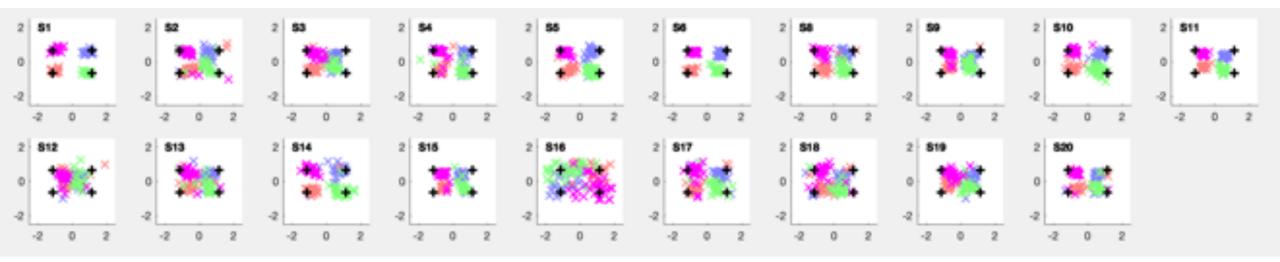
end location view

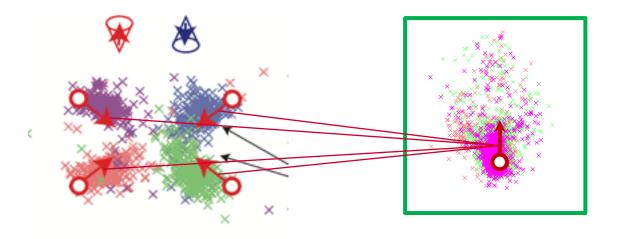




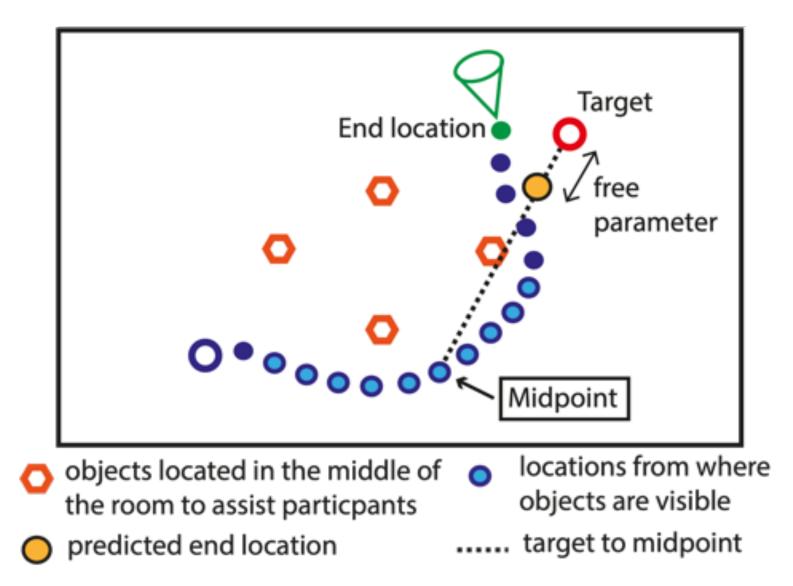


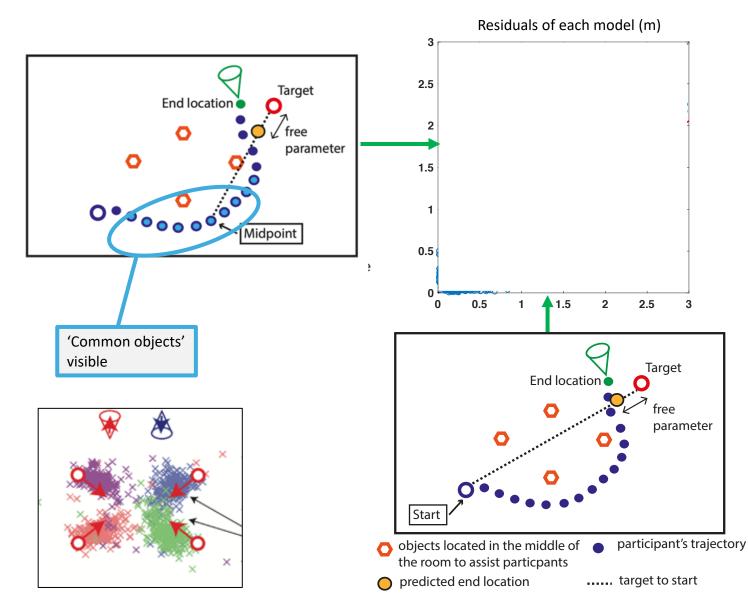
Gootjes-Dreesbach et al (2017)





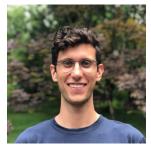
 All participants show a consistent bias relative to the true 'home' location



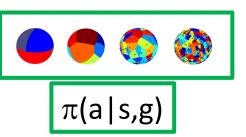


- Participants take a circuitous route to reach the target (to help orient themselves)
- A model that takes this into account does better at explaining the data than one based on the 'Start' location
- Neither a 3D reconstruction model nor a neural network model predict these biases in any obvious way
- We are hoping to model this behaviour in collaboration with Phil Torr's group and DeepMind, i.e. using Generative Query Networks (Eslami et al, 2018)

What are the big problems ahead?



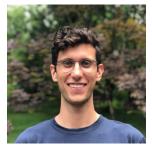
Straightforward	Challenging
or assumed	or costly

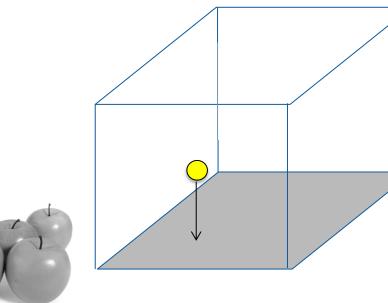


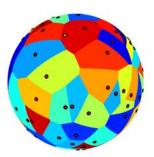
Model-free inference ('Skinner-like')

Model-based inference ('Marr-like')

Adding dimensions as tasks evolve







-

... or losing dimensions at dusk...

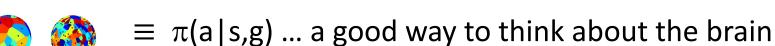
•

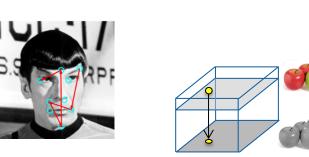
-

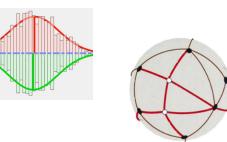
 contexts for action are always compositional

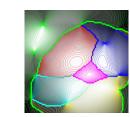
In summary, to answer Behzad's question:

- What are computer vision/reinforcement learning
 - researchers doing wrong?
 - Using the wrong basis set
 - Task should be integral to recognition
 - Often trying to do one-shot recognition
- 3D vision as an example
 - stereoacuity with a moving eye
 - up to navigation
 - could avoid 3D coordinate frames (testable)









Collaborations, COVID, future plans

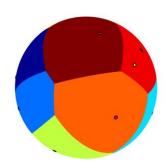
Collaborations and future plans

- Oxford
 - One joint paper (Muryy et al, 2020)
 - Grant to EPSRC about to be submitted
 - Reading
 - Oxford
 - Edinburgh (Siddharth)
 - Leeds
 - Will explore GQN modelling of human navigation and inductive biases inspired by human navigation results
- UCLA
 - Review paper with Mark Edmonds

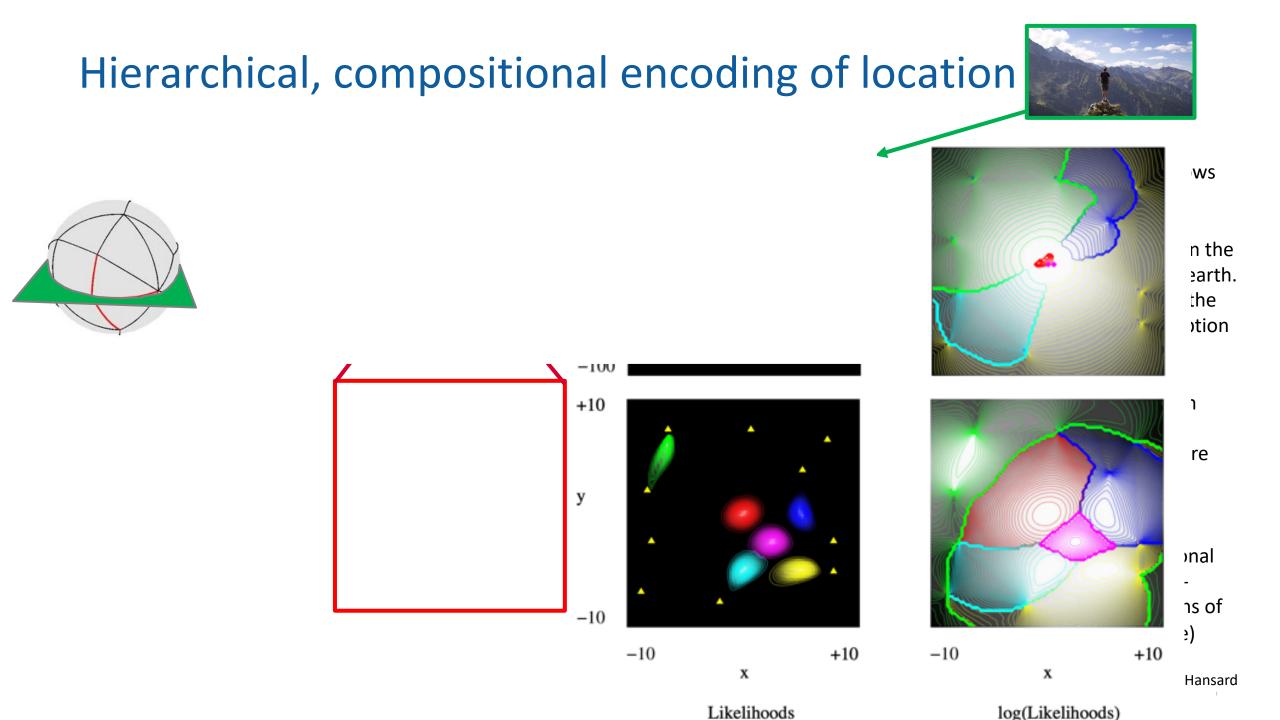
COVID strategy for experiments

- One participant uses the head set until all their data is collected. Then clean and rest HMD.
- Ventilated lab, PPE, distancing and no touching of items in common

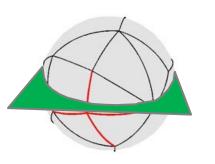
Glossary



Terms used here	Terms used in DNN papers	
Current feature vector (yellow dot)	"feature activations in the last fully connected layer" (Krizhevsky et al, 2012)	
Stored feature vectors (red dots)	Rows in W where $f(x_i,W) = W x_i$ (Karpathy tutorial)	
Voronoi cells (assumes feature vectors are same length, e.g. unit vectors)	"Computing similarity by using Euclidean distance between two 4096-dimensional, real- valued vectors" (Krizhevsky et al, 2012)	
Dimensionality of state space Basis vector	As above (\mathbb{R}^{4096}) One of the 4096 dimensions	
Number of stored feature vectors	"For multi-class classification, we have $y_n \in [K] := \{1, 2,, K\}$ and K is the number of classes" (Li et al 2019, https://arxiv.org/pdf/1808.05385.pdf)	
Policy	П(a s,g)	
Number of actions can be very small	e.g. "binary labels $y_n \in \{-1, 1\}$ "	

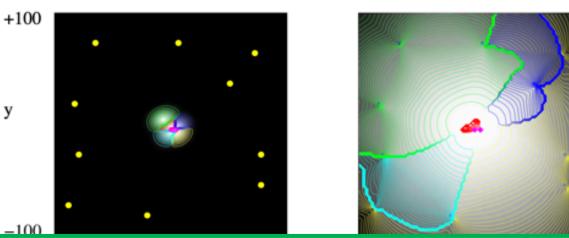


Hierarchical, compositional encoding of location



У

-10



- It will prove useful to identify the pairs of points that are more distant, using the observation that the parallax values recorded in ψ are small in these cases. For a particular threshold value T_{ψ} on parallax, we define ρ as the mask on ψ , such that $\rho_i = 1$, if $\psi_i \leq T_{\psi}$, to identify the subset of ε with relatively small parallax values as $\varepsilon \odot \rho$. These elements of ε are, by design, those that are likely to change relatively slowly as the camera moves over larger distances.
- The 'visual image' (\mathcal{E}) is a vector listing all the angles (N²) between all N visible points.
- For each angle, we also calculate a measure of parallax. If P_i and P_i are both distant, this parallax will be small.

-10		+10	-10	+10
	х		x	
Likelihoods		log(Likelihoods)		

Hierarchical, compositional encoding of location

