

USING VR TO STUDY 3D SPACE PERCEPTION

Andrew Glennerster

Overview

- What is necessary for high-fidelity VR?
 - minimal latency
 - good spatial calibration
- Why is VR useful for studying 3D vision in moving observers?
 - experiments that could not be done without VR

Jenny Vuong

Alex Muryy

Ellen Svarverud

Stuart Gilson Andrew Fitzgibbon

 $Microsoft^{\circ}$ Research

End-to-end latency of different displays

End-to-end latency of different displays

People can detect quite small differences in latency

Psychophysical methods:

- In VR, using SX111 (nVis) head mounted display
- Participants waved a rendered wand as they wished
- Task: 2AFC 'shorter or longer latency' (50% trial of each type)
- 4 practice trials per run followed by 20 trials
- 80 trials per point

Reduce end-to-end latency

People can detect quite small differences in latency

(x,y,X,Y,Z) for n frames

... allows you to solve for 11 parameters per frustum (location, orientation, focal length, aspect ratio etc)

Overview

- What is necessary for high-fidelity VR?
 - minimal latency
 - good spatial calibration

Overview

- What is necessary for high-fidelity VR?
 - minimal latency
 - good spatial calibration
- Why is VR useful for studying 3D vision in moving observers?
 - experiments that could not be done without VR

- Intransitivity of depth relations (A>B>D but A<C<D)
 - Svarverud et al (2012)

University of

Task:

'Is the square closer or farther away in the second interval?'

Redlines

A, B and D are at the same perceived distance

A, C and D are at the same perceived distance

- Intransitivity of depth relations (A>B>D but A<C<D)
 - Svarverud et al (2012)

Vuong et al (submitted)

University of

- Intransitivity of depth relations (A>B>D but A<C<D)
 - Svarverud et al (2012)

Vuong et al (submitted)

University of

- Svarverud et al (2012)

University of

Vuong et al (submitted)

- The best explanation of spatial updating is sometimes a non-metric one
 - Muryy and Glennerster (2018)

This experiment raises questions about whether constructing a consistent map is something we only do after a lot of experience and consistency-checking

- Svarverud et al (2012)

University of

Vuong et al (submitted)

- The best explanation of spatial updating is sometimes a non-metric one
 - Muryy and Glennerster (2018)

- Spatial updating is biased in a way that is inconsistent with 3D reconstruction:
 - Vuong et al (submitted)
- The best explanation of spatial updating is sometimes a non-metric one
 - Muryy and Glennerster (2018)

University of

Overview

- What is necessary for high-fidelity VR?
 - minimal latency
 - good spatial calibration
- Why is VR useful for studying 3D vision in moving observers?
 - experiments that could not be done without VR

Thanks

Jenny Vuong

Alex Muryy

Ellen Svarverud

Luise Gootjes-Dreesbach

Stuart Gilson Andrew Fitzgibbon

Peter Scarfe

