Bilingualism modulates domain-general functional connectivity: insights from resting-state EEG

Alex Sheehan¹ | Douglas Saddy¹ | Christos Pliatsikas^{1,2}

¹School of Psychology and Clinical Language Sciences, University of Reading, UK ²Universidad Antonio de Nebrija, Facultad de Lenguas y Educación, Centro de Ciencia Cognitiva, Spain

Introduction

 Bilingualism leads to experience-dependent, non-linear structural adaptations in white and grey matter in language & cognitive control brain regions¹. 	• Thi wit
 When it comes to functional adaptations, the Bilingual Anterior to Posterior and Subcortical Shift (BAPSS) model proposes that bilinguals shift from relying on frontal regions to posterior & subcortical regions² – see also^{3,4}. 	ge
 However, little is known about the dynamic non-linear effects of bilingualism on brain function. 	
 No evidence exists for any short-term dynamic shifts in brain states when exposed to the external demands of a cognitively demanding task. 	
 Here we use task-driven resting-state electroencephalogram (rs-EEG) employing pre- and post-task recordings, to determine how bilingualism modulates whole-brain connectivity in response to task demands⁵⁻⁷. 	Proce
 We used a cognitive domain-general task, requiring implicit statistical learning and hierarchical structure processing – two generalised skills necessary for a multitude of processes. 	(L W • A
 We used Granger Causality functional connectivity analysis, which, as a directional measure, allows us to determine the flow of information in the brain⁸. This allows greater interpretability of the functional connections. 	•
	• P
Method	Analy
 Participants: 29 highly experienced bilinguals (L2 speakers of English) 	• Re Fu

Neurotypical, no history of head injury, unconsciousness, meningitis, or encephalitis, and had been living in the UK for at least 3 years.

Task:

- The grammar-learning task uses an artificial grammar that generates a **binary** string of 0s and 1s.
- This string is **presented on-screen as blue or red circles** (see Figure 1), and the participant must respond on the keyboard indicating which colour they had just seen.
- The grammar follows **two rules**, which in turn creates **three laws** as to what can occur within the grammar, allowing specific points to become unambiguous as to which symbol will occur next^{9,10}.
 - Rule one: $0 \rightarrow 1$
 - Rule two: $1 \rightarrow 01$
 - \succ First law: Every 0 is followed by a 1 (i.e., 00 cannot occur).
 - \succ Second law: Two 1s are always followed by a 0 (i.e., 111 cannot occur).
 - \succ Third law: A single 1 may be followed by either a 1 or a 0.

a

is task requires participants to **implicitly track the statistical regularities** ithin the hierarchical structure of the grammar, thus engaging domaineneral abilities due to the task's cognitive demands.

Figure 1: Example stimuli from the artificial grammar task

edure:

Participants filled out demographics and language history questionnaire Language and Social Background Questionnaire – LSBQ¹¹). For this study, ve used the LSBQ composite score for as a continuous predictor.

After fitting the **EEG electrode cap**, the procedure occurred as follows:

- Pre-task recording at rest (5 mins)
- **Domain-general Serial Reaction Time Artificial Grammar Learning** task¹⁰. (~20 mins)
- Post-task 3 recording at rest (5 mins)

Participants completed two more tasks as part of this protocol. The order of task resentation was counter-balanced.

ysis:

-referenced in EEGLAB, then pre-processed in BrainVision Analyzer. **nctional connectivity matrices** computed using BrainStorm. Data statistically analysed using Generalized Additive Models¹⁴ in R, which allow non-linear relationships to be modelled when justified by the data.

• Models LSBQ composite score against strength of connectivity between regions.

Figure 2: Electrode montage diagrams showing significant bilingualism-modulated connections. Left: pre-task. Right: post-task. Arrows indicate directionality/the flow of information.

Economic and Socia

Results

Discussion

- **Over double the number of node-to-node connections** significantly modulated by level of bilingualism **post-task** compared to pre-task
- This task caused far more widely distributed bilingualism-modulated connectivity, involving every region included, compared to pre-task.
 - connectivity¹⁵.

- other areas for integration.

R	e	e	re	n	C	93	5	

r liaisikas C. Diili iyud
Grundy JG, et al. An
Bice K, et al. Neurob
Pereira Soares SM,
Wang Z, et al. Neuro
Lor CS, et al. Neuro
Kavcic V, et al. Alzhe
doi:10.1002/dad2.12
Wang HE, et al. From
Kriveshan DC ArVi

- Schmid S, et al. Cogn Sci. 2023;47(1):e13242. doi:10.1111/cogs.13242 11. Anderson JAE, et al. Behav Res. 2018;50(1):250-263. doi:10.3758/s13428-017-0867-9
- doi:10.1111/mono.12032
- 14. Wood SN. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC; 2006.
- doi:10.1201/9781420010404 15. Wang H, et al. J Cogn Neurosci. 2016;28(7):971-984. doi:10.1162/jocn a 00947

Contact information

- Email: <u>c.pliatsikas@reading.ac.uk</u>

• Four pre-task connections significantly modulated by level of bilingualism, shown in Figure 2a (green arrows).

Ten post-domain-general task connections significantly modulated by level of bilingualism, shown in Figure 2b (orange arrows).

• Findings from pre-task connections suggest increased flow of information from frontal to posterior regions with increased bilingual experience

This corroborates previous findings and the predictions from the BAPSS model³

Bilingual experience significantly affects neural recruitment for hierarchical structure processing and implicit statistical learning.

- This is the opposite to the expected effect – at rest, the brain usually shows more widely distributed connectivity, and post-task, usually shows more task-specific localised

 Increased number of long-distance, inter-hemispheric, and occipital connections are consistent with the BAPSS model³.

Solely inbound occipital connections modulated by level of bilingualism suggests recruitment of this region for the processing of the stimuli instead of for passing visual information to

• Clustering of connections around left temporal region post-task is particularly unexpected. This suggests strong language network activation despite no language being present in the task.

> Pliatsikas C. Bilingualism: Language and Cognition. 2020;23(2):459-471. doi: 10.1017/S1366728919000130 nnals of the New York Academy of Sciences. 2017;1396(1):183-201. doi:10.1111/nyas.13333

- *biol Lang.* 2020;1(3):288-318. doi:<u>10.1162/nol_a_00014</u> et al.. Brain Lang. 2021;223:105030. doi:10.1016/j.bandl.2021.105030
- hmage. 2012;62(1):394-407. doi:10.1016/j.neuroimage.2012.04.051
- Image Clin. 2023;37:103345. doi:<u>10.1016/j.nicl.2023.103345</u>

eimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2021;13(1):e12153.

nt Neurosci. 2014;8. https://www.frontiersin.org/articles/10.3389/fnins.2014.00405 Krivochen DG. ArXiv210401363 Cs. Published online April 3, 2021. http://arxiv.org/abs/2104.01363

12. Duñabeitia JA, et al. Sci Data. 2022;9(1):431. doi: 10.1038/s41597-022-01552-7 13. Zelazo PD, et al. li. Monographs of the Society for Research in Child Development. 2013;78(4):16-33.

School of Psychology & Clinical Language Sciences, University of Reading, Whiteknights, RG6 6AH, UK