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Bilingualism modulates domain-general functional 

connectivity: insights from resting-state EEG

Results

• Four pre-task connections significantly modulated by level of bilingualism, 

shown in Figure 2a (green arrows).

• Ten post-domain-general task connections significantly modulated by level of 

bilingualism, shown in Figure 2b (orange arrows).

 

 

 Discussion

• Findings from pre-task connections suggest increased flow of information from 

frontal to posterior regions with increased bilingual experience

− This corroborates previous findings and the predictions from the BAPSS model3

• Over double the number of node-to-node connections significantly modulated 

by level of bilingualism post-task compared to pre-task 

− Bilingual experience significantly affects neural recruitment for hierarchical structure 

processing and implicit statistical learning.

• This task caused far more widely distributed bilingualism-modulated 

connectivity, involving every region included, compared to pre-task. 

− This is the opposite to the expected effect – at rest, the brain usually shows more widely 

distributed connectivity, and post-task, usually shows more task-specific localised 

connectivity15. 

• Increased number of long-distance, inter-hemispheric, and occipital connections 

are consistent with the BAPSS model3. 

− Solely inbound occipital connections modulated by level of bilingualism suggests recruitment 

of this region for the processing of the stimuli instead of for passing visual information to 

other areas for integration.

• Clustering of connections around left temporal region post-task is particularly 

unexpected. This suggests strong language network activation despite no 

language being present in the task.

• This task requires participants to implicitly track the statistical regularities 

within the hierarchical structure of the grammar, thus engaging domain-

general abilities due to the task's cognitive demands.

                                      Figure 1: Example stimuli from the artificial grammar task

Procedure:

• Participants filled out demographics and language history questionnaire 

(Language and Social Background Questionnaire – LSBQ11). For this study, 

we used the LSBQ composite score for as a continuous predictor.

• After fitting the EEG electrode cap, the procedure occurred as follows:

• Pre-task recording at rest (5 mins)

• Domain-general – Serial Reaction Time Artificial Grammar Learning 

task10. (~20 mins)

• Post-task 3 recording at rest (5 mins)

• Participants completed two more tasks as part of this protocol. The order of task 

presentation was counter-balanced.

Analysis:

• Re-referenced in EEGLAB, then pre-processed in BrainVision Analyzer. 

Functional connectivity matrices computed using BrainStorm. Data statistically 

analysed using Generalized Additive Models14 in R, which allow non-linear 

relationships to be modelled when justified by the data.

• Models LSBQ composite score against strength of connectivity between 

regions.

 

Figure 2: Electrode montage diagrams showing significant bilingualism-modulated connections. Left: pre-task. 

Right: post-task. Arrows indicate directionality/the flow of information.

Introduction 

• Bilingualism leads to experience-dependent, non-linear structural adaptations in 

white and grey matter in language & cognitive control brain regions1. 

• When it comes to functional adaptations, the Bilingual Anterior to Posterior and 

Subcortical Shift (BAPSS) model proposes that bilinguals shift from relying on 

frontal regions to posterior & subcortical regions2– see also3,4. 

• However, little is known about the dynamic non-linear effects of bilingualism on 

brain function.

• No evidence exists for any short-term dynamic shifts in brain states when 

exposed to the external demands of a cognitively demanding task. 

• Here we use task-driven resting-state electroencephalogram (rs-EEG) 

employing pre- and post-task recordings, to determine how bilingualism modulates 

whole-brain connectivity in response to task demands5-7.

• We used a cognitive domain-general task, requiring implicit statistical learning 

and hierarchical structure processing – two generalised skills necessary for a 

multitude of processes.

• We used Granger Causality functional connectivity analysis, which, as a 

directional measure, allows us to determine the flow of information in the brain8. 

This allows greater interpretability of the functional connections.

 

 Method

Participants:

• 29 highly experienced bilinguals (L2 speakers of English)

➢ Neurotypical, no history of head injury, unconsciousness, meningitis, or 

encephalitis, and had been living in the UK for at least 3 years.

Task:

• The grammar-learning task uses an artificial grammar that generates a binary 

string of 0s and 1s.

• This string is presented on-screen as blue or red circles (see Figure 1), and the 

participant must respond on the keyboard indicating which colour they had just 

seen.

• The grammar follows two rules, which in turn creates three laws as to what can 

occur within the grammar, allowing specific points to become unambiguous as to 

which symbol will occur next9,10. 

▪ Rule one: 0 → 1

▪ Rule two: 1 → 01

➢ First law: Every 0 is followed by a 1 (i.e., 00 cannot occur).

➢ Second law: Two 1s are always followed by a 0 (i.e., 111 cannot occur).

➢ Third law: A single 1 may be followed by either a 1 or a 0.
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