DARE WP1.1 A tool for urban flood delineation using Synthetic Aperture Radar.

D. Mason, S. Vetra-Carvalho and S. Dance.

- High resolution SAR sensors now commonly used in natural disasters such as flooding (synoptic, all-weather, day/night)
- Sensors have resolutions as high as 1m
- Flood water generally appears dark in SAR image

Uses of flood extents derived from SAR images.

- Damage assessment and mitigation.
- Flood relief management
 - several systems to extract the flood extent from a SAR image developed
 - tend to work well in rural areas and poorly in urban areas.
- Improved flood forecasting using data assimilation.

Flood extent delineation algorithm.

TerraSAR-X image of Tewkesbury flooding on 25th July 2007 showing urban areas (3m resolution, dark areas are water).

Layover (AB) and shadow (CD) in a flooded street between adjacent buildings.

LiDAR DSM of Tewkesbury (2m resolution).

Regions unseen by TerraSAR-X in LiDAR DSM due to combined shadow and layover (satellite looking West).

Urban flood detection

- guided by rural flood detection
 - use local waterline heights in the rural areas
 - flooding in urban areas should not be at a substantially higher level than in nearby rural areas.
 - group low backscatter/low height pixels using region-growing
 - regions of shadow and layover masked out.

Flood extent detected automatically in near real-time

(a) Rural

SAR simulator: RaySAR

- To date used SETES SAR simulator, not publicly available
- Number of SAR simulators are open-source
- A first step in WP1.1 has been investigation of simulators
- Should not be too computer-intensive
- Selected RaySAR, based on POV-Ray
- POV-Ray is ray-tracer developed for use with incoherent visible light
- RaySAR extends POV-Ray to cope with coherent SAR ray-tracing
- RaySAR can model layover and shadow
- Processing time ~ minutes/scene

(a) POV-Ray image of LiDAR DEM containing houses (viewed from North, incidence angle 45°) (b) RaySAR single-bounce image showing shadow (illuminated from North, incidence angle 45°)

Detection of layover and shadow

- Get LiDAR DSM of study area.
- Create normalised DSM (nDSM) by subtracting DTM from DSM.
- Create simulated ground-range-projected SAR images for DSM, DTM and nDSM.
- Layover is where backscatter > 0 in nDSM SAR image.
- Shadow is where backscatter = 0 in DSM SAR image and backscatter > 0 in DTM SAR image.
- To test, check if get same shadow/layover map from RaySAR as from SETES for Tewkesbury.

DEMs, simulated images (looking West), and separate layers (after Tao, 2015).

Thames flooding west of London in early 2014

- Substantial urban areas flooded (Jan and Feb)
- CSK constellation uniquely useful for flood monitoring (12-hour revisit interval).
- Five CSK images acquired under CORSAIR project -
 - 04/01/2014 (pre-flood),
 - 10/01/2014 (first peak),
 - 12/02/2014 (1 day after second, higher, peak),
 - 13/02/2014 (when EA acquired aerial photography),
 - 14/02/2014.

EA flood outlines for 12/02/2014

CSK image of Thames flood west of London on 12/02/2014

Press photo (12/02/2104) CSK 3m resolution image (12/02/2014)

Flooding in Wraysbury

EA aerial photo (13/02/2014)

CSK image (12/02/2014)

Flooding in Wargrave

How to get water levels from flood extents

- flood extents can provide observations for assimilation into a flood forecasting model
- water levels can be estimated along the boundaries of a flood extent by intersecting them with the floodplain DTM
- river gauges provide very accurate water levels, but gauge only every 20 km or so much more spatial information in waterline
- select a subset of waterline levels for assimilation because adjacent levels will be strongly correlated.
- select candidate waterline points in rural areas of low slope and vegetation, so that levels can be measured as accurately as possible.

Candidate waterline points (red) remaining after thinning in rural region.

Candidate waterline points (red) remaining after thinning in urban region.

Satellite-supported flood forecast in river networks: a real case study (links to WP1.2).

- Aim: Improve a flood inundation model using a real sequence of SAR images.
- WLOs assimilated into a model of a river network, to update the model state, and to simultaneously estimate river discharge and model parameters, including river depths and channel friction.
- Study based on a real event on Lower Severn and Avon rivers in November 2012.

Flood inundation study area

Event of 23 November – 4 December 2012

Severn flow (Saxon's Lode)

Daily COSMO-SkyMed images of flood of 23/11/12 – 4/12/12, with flood extents (blue) overlain in model domain.

Flood modelling cascade and assimilation system

Data assimilation

- Data assimilation method was local Ensemble Kalman filter
 - only WLOs within a certain distance of a model water level were used in its correction
 - weight of observations was reduced as their distance from the particular model point increases

Time series of water levels predicted by the filter at Worcester on the Severn.

SGCfr-2

Evolution of the estimation of channel friction in the assimilation.

Evolution of the estimate of river depths during seven sequential assimilation steps for the Severn (top), and the Avon (bottom).

WP1.1 link to WP3.1 (technology translation)

- PDRA will be employed as technology translator
- Example of work = developing SAR urban flood delineator to be standalone
- Market research study