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Introducing me!

Distinguished Professor of
Distributed Systems, School of
Computing and Communications,
Lancaster University

Theme Lead (Environment), Data
Science Institute, Lancaster
EPSRC Senior Fellow in Digital
Technology and Living With
Environmental Change (DT/LWEC)
Senior Fellow, Centre for Ecology
and Hydrology
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... and part-time shepherd!
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Overview of the talk
* Part I: Environmental data science

— What is environmental data science

— Challenges in the area

— Scope of our work
e Part 2: Digital Technology and Living

with Environmental Change

— Aims of my fellowship

— Approach
— The first sprint on flooding
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Part 1

Environmental data science
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What is environmental data science?

* The development of data
science principles and “
techniques for sense making
and decision support related -
to the natural environment

* Focus on methodological I et il
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* Importance of integration
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Challenges of the area

- 4 4 4 4 -

ne complexity challenge

ne data challenge

ne modelling c
ne cross-discip

ne spatial/ temporal cha

nallenge
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ne uncertainty challenge
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Scope of environmental data science

From data science to policy and strategy: decision
making under uncertainty

Data science methods: models and combinations of
models

Data science infrastructure: data discovery, storage
and processing services

Data aquisition: observation and monitoring of the
natural environment
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Centre of Excellence in Environmental Data Science
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A research roadmap

Challenge 1: To encourage and enable the required level of cultural shift towards open science, that is towards a science that
is more collaborative and integrative through open approaches to data, models and knowledge formation, and also towards a
science that is more transparent, repeatable and reproducible.

Challenge 2: To build on the benefits of cloud computing, but offer levels of abstraction (and associated services) that are
much better suited to the domain of science, including high-level support for running complex, integrated modelling in the
cloud.

Challenge 3: To address complexity more fundamentally and explicitly and, in particular, seek data science techniques that
recognise and resolve key issues of complex systems including feedback loops, inter-dependent variables, extremes and also
to detect and manage emergent behaviour.

Challenge 4: To provide techniques and frameworks to both reify uncertainty in scientific studies and also reason about the
cascading uncertainties across complex experiments, e.g. in integrated modelling frameworks and in ensemble approaches.
Challenge 5: To seek adaptive techniques driven by considerations of uncertainty and also the goals of a scientific study,
including adaptive approaches to sampling or gathering of data (including in real-time in an Internet of Things), and also in
adaptive modelling approaches.

Challenge 6: To seek approaches that deal with epistemic uncertainty in environmental modelling, noting the important links
with dealing with emergent behavior in complex and irreducible phenomena.

Challenge 7: To seek novel data science techniques and, in particular, innovative combinations of data science techniques
that can make sense of the increasing complexity, variety and veracity of underlying environmental data, exploiting also
multiple data sets including real-time streaming data.

Challenge 8: To seek innovations in modelling by combining process models with data-driven or stochastic modelling
techniques and also seeking ways of assimilating a range of data sources more generally into steering model executions.

Challenge 9: To incorporate sophisticated spatial and temporal reasoning, including reasoning across scales, as an integral
aspect of environmental data science and not something that is just provided through separate tools such as GIS tools.

Challenge 10: To discover new fundamentally new modes of working, methods and means of organisation that enable the
required level of cross-disciplinary collaboration as required to address the key grand challenges of earth and environmental
sciences and, more specifically environmental data science in its contribution to these grand challenges.
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Part 2

Digital Technology and Living with Environmental Change
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Overall aims of the fellowship

Working together for digitally inspired
integrated environmental science

* Digital technology to explore grand
challenges in environmental science

* Cross cutting themes:

* Managing complexity & ensemple
uncertainty

e Raising abstraction

* Developing a software architecture
for deploying cloud technologies
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Flood sprint: initial workshop

Key outcomes:

* Identification of four storyboards to drive
research

— The case for place: models of everywhere
— A data-centric view

— Towards more agile infrastructure

— Let’s work together

e “We are on the brink of something new
and exciting building on: i) a move
towards a more open approach to flood
risk assessment, and ii) a shift in balance
towards a more data-centric perspective
to complement the existing process
model-centric approach.”
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Context: National Flood Resilience Review

Integrated Simulation Pathway
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Models of everywhere revisited
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Models of everywhere revisited
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Models of everywhere revisited

Heterogeneous Data Sources
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Focus: communities at risk project

* Data set provided by JBA Consulting

* Aim to improve flood risk information for a range
of drivers

* Covers Derbyshire, Nottinghamshire and
Leicestershire

* Access to the Property Impact Estimator
Spreadsheet

* Links river flow gauge to each individual property
at risk of flooding within Flood Zone 2
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Communities at Risk Project (contd)

A

Floodplain
pz = Jul f(H)dH
= Juls P(S|H)dS f(H)dH

= [, JsZ(S,H)P(S | H)dS f(H)dH
Due to computational complexity
uz = Y sZ(S,H)P(S| H)f(H)




Story-Led Demonstrator
(Used to illustrate and evaluate key research ideas)

Technologies Conceptual Stack Key Benefits to lllustrate
Jupyter _
Shiny App <«——  User Interface Collaborative .
Web Site / Web App Managed Sharing

Same system, single query

SPARQL (++) «—— Query —>  Multi-Perspective
Check-Box Approach
Rinked Deta ¢ Flood Risk f Multi-Perspectives
[o] isk from i- i
RDF <4—— Semantic Enrichment
RDFS / OWL Provenance
R / Python / Fortran ¢ Models-on-demand

Operating Context <€———  Model Service ——> Reproducibility / Reuse

API Adaptability / Model Selection
Filesystem storage Work across heterogeneous datasets
Cloud service Generate missing data ‘on-demand'

AWS S3 <« Data Storage —— Describe data requirements
Azure Storage using ‘complete’ ontology

Data microservice Rellective / Inteligent System
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Evaluation: enhanced risk analysis

“As a flood risk manager, | want to
understand the flood risk of Newark and
the associated uncertainties. This flood
risk assessment should combine
information from all available data
sources. Any inconsistencies in the
modelling assumption should be made
visible as well potential intervention
strategies to reduce and mitigate flood
risk. “
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Evaluation: exploring the data space

“As a data scientist working with DSI Lancaster, |
want to explore and understand all available
data sources that | have to inform decisions
about the flood risk of Newark. This includes
model outputs, and an increasingly wide range
of data sources including, for example, Section
19 reports and data extracted from social media.
| also want to access meta-data associated with
all this data, including provenance information. |
am particularly interested in using this data to
discover potentially new levels of uncertainty in
the data.”




Damage Estimation (EM)

Legend

250 —@= Damage Estimation

Expected Annual Damage

EXPECTED ANNUAL DAMAGE
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Example output

50 7 100 200
Return Period

Current Defence Scheme:
50 Year Defence Scheme:
100 Year Defence Scheme:
200 Year Defence Scheme:
500 Year Defence Scheme:

Schoolof Com
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1000

puting

Onset of Flooding Assumption

Optimistic
£2,990,942.12
£1,892,017.33
£1,605,100.95
£1,332,623.57
£737,728.62

Midpoint
£3,312,795.07
£2,022,983.93
£1,721,811.84
£1,409,444.48
£762,208.60
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Pessimistic
£3,751,284.98
£2,203,772.42
£1,887,153.00
£1,497,270.56
£767,279.36
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Thank you for listening!

... any gquestions?




Hydraulic model has been run for a finite set of
return periods, e.g. 2,5,10,20,50,... years (x-axis)
For this property flooding occurs somewhere
between 20 and 50 year return period. This can be
seen because the estimate of damage change to
being non-zero at the 20 year return period point
What we don’t know is the exact change in
behaviour between the 20 and 50 year return
period i.e. the exact return period that causes
flooding.
From this graph we know it lies somewhere
between the 20 and 50 year return period. We can
make some assumptions about where this point lies
in order to calculate the expected annual damage
estimate. These assumptions are framed in terms of
the property owner (colour coded as in the figure):
* Optimistic - flooding occurs as close to the 50
year return period as possible
- flooding occurs just after the 20
year return period as possible
*  Midpoint — halfway in between the 20 and 50
year return period; the 35 year return period
This changing assumptions can have a huge impact
on the expected annual damage therefore there is
huge uncertainty around the risk analysis and the
resulting decisions that are made.

Damage
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