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Abstract

We apply functional data analysis to survey expectations data, and show that
functional principal component analysis combined with functional regression analysis
is a fruitful way of capturing the effects of others’ forecasts on a respondent’s inflation
forecasts. We estimate forward-looking Phillips curves on each respondent’s inflation
and unemployment rate forecasts, and show that for nearly a half of the respondents
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1 Introduction

In the recent literature there has been much interest in why survey respondents disagree

with one another in terms of their expectations. One strand of the literature has asked

whether forecasters disagree because they have different views (or models) about how the

economy operates. In terms of inflation forecasting, for example, a set of individual fore-

casters may all have in mind a Phillips curve model whereby inflation responds to the

level of “slack” in the economy, but might hold different views about the degree to which

inflation responds.1 This and related issues have been explored by a number of authors,

including Casey (2020) and Clements (2023) inter alia, who fit Phillips curve-type models

to the forecasts of survey respondents at the individual level, to determine whether the

respondents’ forecasts are consistent with “similar” Phillips curve models.

The Phillips curve was originally proposed by Phillips (1958) as an inverse relationship

between UK wage inflation and unemployment, but following Calvo (1983) has emerged

as a “micro-founded” relationship between inflation, expectations of future inflation, and

a measure of slack: the so-called expectations-augmented Phillips curve.2

In this paper we investigate whether functional data analysis (FDA) can be used to

include the ‘forecasts of others’ in individuals’ Phillips curve models. This is motivated by

the belief that forecasters are likely to be influenced by their fellow forecasters, and that

FDA in principle should prove a useful tool. Given the relatively small numbers of forecasts

typically available at the level of the individual forecaster, our baseline model is relatively

simple: we estimate simple, constant-parameter linear Phillips curve models. Nevertheless,

there is evidence that the actual Phillips curve (between actual inflation and a measure of

slack in the economy, as opposed to individuals’ forecasts of these quantities) may have

flattened over time, and that the relationship may be non-linear (see, e.g., Hooper et al.

(2019)). Indeed, for forecasts, Fendel et al. (2011) find the slope of the Phillips curve

depends of the state of the business cycle. We explore possible dependence of the phase of

the business cycle in what follows.

Whatever the Phillips curve model, we show that FDA can be used to allow for the

possibility that an individual’s forecasts might be influenced by the forecasts of others, and

in particular, by the forecasts of other respondents which are known to the forecaster when

they make their forecasts. We surmise that respondents might respond to different aspects

of the forecasts of others to different degrees, and that this might itself constitute a source

of forecaster disagreement.

1Other papers consider the theory-consistency of agents’ expectations with a relationship between rel-
ative consumption growth and real exchange rate depreciations across countries (see Backus and Smith
(1993)), or whether consumers’ spending decisions are consistent with an Euler equation (Dräger and
Nghiem (2021)), inter alia.

2See Gali and Gertler (1999) and Coibion et al. (2018) for a review of its historical development.
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To make this concrete, consider Clements (2023), who estimates a Phillips curve model

for each respondent j using j’s forecasts, of the form:

Ej,tπt+h = βjEj,tπt+h+1 + αjEj,tut+h + ej,t, (1)

where Ej,tπt+h are j’s h-step ahead forecasts of πt+h made at time t, where π is the quarterly

inflation rate, and Ej,tut+h is the forecast of the unemployment rate (u). Thus, (1) is a

relationship that would be expected to hold (subject to a disturbance term ej,t) between

individual j’s forecasts of inflation (for periods t+h, and t+h+1) and the unemployment

rate, all made at time t, if j’s forecasts are consistent with a Phillips curve-type relationship.

In addition to the range of Phillips curve models that might guide expectations, there

is a large literature suggesting that forecasters pay attention to the views of others for a

variety of reasons (see, e.g., Clements (2018)). This is usually allowed for in the macro-

forecasting literature by including the consensus or average of the (appropriately dated)

cross-section of individuals’ forecasts. The main aim of our paper is to show that there

are alternatives to the consensus as ways of including others’ forecasts, and that these

alternatives may give rise to different findings, as well as yielding additional insights into

macro-forecaster behavior.

The proposal is to extend (1) to allow for the forecasts of others in a flexible way. That is,

we allow j’s forecasts to be driven by an aggregator function of other individuals’ forecasts

(made at time t− 1, so that these are known to j at time t). Because we do not know how

professional forecasters use the information contained in the forecasts of others, we proceed

by including the information in the entire distribution of all the individuals’ time t − 1

forecasts. Thus, in addition to including Ej,tπt+h+1 on the right-hand-side (as suggested

by the expectations-augmented Phillips curve applied to an individual’s forecasts), we also

include
∫
γj(x)dFt+h+1|t−1(x) in (1), which gives us:

Ej,tπt+h = βjEj,tπt+h+1 +

∫
γj(x)dFt+h+1|t−1(x) + αjEj,tut+h + ej,t, (2)

where Ft+h+1|t−1 is the distribution of individuals’ forecasts made at time t − 1 for time

t+h+1, and γj(·) is the coefficient function which serves as the flexible aggregator for the

individual j. Notice that γ(·) is subscripted by j: γj (·). This allows individual j’s forecasts
to be influenced by the forecasts of others in a way which is peculiar to that individual.

The challenges to standard methods of model estimation and inference in (2) resulting

from the inclusion of the distribution of individuals’ forecasts can be overcome by the

use of FDA. FDA deals with problems where one of the variables in the analysis can be

naturally viewed as a smooth curve or function (Ramsay and Silverman, 2005; Horváth

and Kokoszka, 2012). That is, FDA can be thought of as the statistical analysis of samples
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of curves, possibly combined with the quantities of standard analysis - vectors and scalars.

FDA has witnessed rapid development over the last two decades. While the central ideas

and methods of FDA have achieved a certain maturity, applications of FDA proceed at

an accelerating speed. Economics and finance have benefited from the use of tools from

FDA. Some of the prominent examples in economics and finance include: intraday price

curves (Kokoszka et al., 2015), the term structure of interest rates (Bardsley et al., 2017;

Horváth et al., 2022), forward curves of commodity futures (Horváth et al., 2020), and

price signatures (Oomen, 2019). In our case, the distribution of individuals’ forecasts can

be characterized as a function. We will show how tools developed in FDA can be applied

to make statistical inference on (2).

In terms of the use of FDA to extract information from the cross-section of forecasts,

Meeks and Monti (2019) is similar to our study. They relate distributions of inflation

expectations from surveys of professional forecasters to actual inflation. They apply func-

tional principal component analysis (FPCA) to the distributions of inflation expectations

and find that the first three principal components (PCs) can be interpreted as disagree-

ment, skew, and “shape”. They then estimate Phillips curve models of actual inflation

with forward-looking components comprising these PCs, as a way of taking into account

the individual-level heterogeneity. Their approach is founded within the literature that

uses survey expectations as a source of expectations that is external to the model itself,

obviating the need to instrument future values of variables.3 Our study is different because

we study how professional survey respondents’ forecasts of inflation are affected by the

forecasts of others. To the best of our knowledge, our study is the first to apply FDA to

the analysis of the “theory consistency” of macro-expectations, where FDA is employed to

capture potential interactions between forecasters.4

The plan of the rest of the paper is as follows. Section 2 describes the forecast data

we use, and how and why the empirical cross-sectional inflation forecast distributions are

transformed to cross-sectional log quantile densities (LQDs) of the inflation forecasts. Sec-

tion 3 explains how we apply FDA to the estimation of the “Phillips curve models”, of the

form of (2), for each respondent j, and discusses the findings. Section 4 then explores the

robustness of our findings to some of the modeling choices we have made, and to alternative

formulations. Section 5 offers some concluding remarks, as well as some potential avenues

for future research. We believe the methods we discuss and illustrate might be fruitfully

used in many other contexts relating to survey expectations.

3See, for example, McCallum (1976) and Coibion et al. (2018), albeit that the prior literature simply
used aggregate expectations.

4See Clements (2023) for a discussion of the literature on investigating whether macro forecasts are
consistent with various macro-theories, including the Phillips curve.
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2 Descriptive analysis

The forecast data is from the US Survey of Professional Forecasters (SPF), the longest-

running survey of macro expectations of professionals.5 The survey began in 1968:Q4, and

has been held quarterly ever since. The individual-level data are made available on the

website of the Federal Reserve Bank of Philadelphia. Extensive use of the SPF data has

been made by academic researchers. For our purposes, it is important that the respondent

to a given survey will know the responses made to the survey in the previous quarter, as

well as the fact that individuals can be tracked through time even though they remain

anonymous. We use the individual expectations from 1981:Q3 - 2022:Q2, inclusive, for:

� CPI Inflation Rate (CPI) Headline: annualized percentage points, seasonally ad-

justed, based on quarterly average index level.

� Civilian Unemployment Rate (UNEMP): percentage points, seasonally adjusted, quar-

terly average.

The cross-sectional distributions use the forecasts from all the respondents, some of

whom make only a small number of returns, although we only estimate Phillips curve

models for respondents who make more than a minimum number of forecasts.

2.1 Properties of the Forecasts

Table 1 presents the summary statistics of the SPF CPI and unemployment forecasts.

Individuals give their forecasts of the current quarter - the quarter of the survey (these are

denoted h = 0), of the next quarter (h = 1) and of the next 3 quarters. The table pools the

forecasts across individuals and survey quarters. It is evident that the standard deviation

of the CPI forecasts is greatest at h = 0, whereas the reverse is true for the unemployment

rate forecasts.

2.2 Data transformation

We begin by plotting the cross-sectional distributions of the inflation forecasts for each

quarter in the sample (1981:Q3 - 2022:Q2) for h = 1, where the density functions have

been estimated using a kernel-type estimator: see the upper panel of Figure 1.

However, density functions satisfy two constraints - strict non-negativity, and integrat-

ing to one - which complicate their use in FDA.6 The literature on FDA has devoted much

5Clements et al. (2022) provide a review of surveys of professional forecasters. On the U.S. SPF, see
Croushore (1993) and Croushore and Stark (2001).

6Density functions can be viewed as elements of a Hilbert space, but they do not constitute a linear
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Figure 1: Upper Panel: Cross-sectional densities of inflation forecasts for h = 1; Lower
Panel: Cross-sectional LQD of inflation forecasts for h = 1

6



Table 1: Summary statistics of CPI and unemployment forecasts

CPI
Mean SD Skewness Kurtosis 10% Q 25% Q 50% Q 75% Q 90% Q

h = 0 2.839 0.907 -0.202 3.875 1.822 2.346 2.855 3.388 3.848
h = 1 2.866 0.802 -0.306 4.492 2.014 2.488 2.893 3.298 3.725
h = 2 2.931 0.748 -0.223 4.480 2.156 2.596 2.943 3.324 3.723
h = 3 2.992 0.744 -0.072 4.582 2.218 2.639 2.998 3.367 3.797
h = 4 3.047 0.754 -0.011 4.509 2.252 2.685 3.051 3.422 3.859

Unemployment
Mean SD Skewness Kurtosis 10% Q 25% Q 50% Q 75% Q 90% Q

h = 0 6.217 0.142 0.211 3.925 6.064 6.142 6.212 6.294 6.376
h = 1 6.180 0.226 0.088 3.388 5.924 6.051 6.175 6.297 6.446
h = 2 6.125 0.287 0.066 3.470 5.801 5.947 6.123 6.283 6.463
h = 3 6.067 0.338 0.084 3.549 5.690 5.865 6.062 6.254 6.464
h = 4 6.009 0.383 0.112 3.599 5.585 5.781 6.000 6.225 6.456

effort to how best to deal with density curves. An influential paper is Petersen and Müller

(2016). Their main idea is to suitably transform the densities (constrained curves) into un-

constrained curves, so that one can embed the densities into the L2 space. Then, standard

methods of FDA, such as FPCA and functional regression (detailed below), can be applied

to the transformed curves in the L2 space. If all the densities share a common known sup-

port T , the representations of the density curves themselves can be obtained by applying

the inverse transform to the unconstrained curves in the L2 space. Petersen and Müller

(2016) recommend two choices for the functional transformation, the log hazard transform

and the log quantile density transformation. The log quantile density transformation has

become the more popular choice (and has been used in e.g., bioscience (Petersen et al.,

2019) and engineering (Chen et al., 2019)), and we use this in our application.

Briefly, the log quantile density transformation (LQD) transformation works as follows.

A cross-sectional distribution at time t is commonly represented in one of three ways: the

cumulative distribution function (CDF) Ft, the probability density function (PDF) ft, and

the quantile function Qt. The three representations have the following relationship

Ft(x) =

∫ x

−∞
ft(u)du, −∞ < x <∞,

Qt(s) = F−1
t (s) = inf{y ∈ (0, 1) : Ft(y) ≥ s}, s ∈ (0, 1).

subspace. If the densities are treated as elements of L2 space, then linear combinations of densities will
be elements of L2, but will not necessarily be densities. Thus, it is not appropriate to directly apply
conventional FDA approaches to density curves.
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A given distribution is uniquely characterized by any of the three functions, Ft, ft, and

Qt, each of which may be used as a functional data object. Nevertheless, all three are

subject to nonlinear constraints. Specifically, the CDF is constrained by 0 ≤ Ft(x) ≤ 1

and F ′
t(x) ≥ 0; the PDF by the constraints ft > 0; while the quantile function is the least

constrained, requiring only that Q′
t(x) ≥ 0. Unfortunately, the presence of the nonlinear

constraints complicates the application of typical linear functional data methods, as noted

above. To enable the application of FDA, we consider ways to characterize a distribution

with fewer or no constraints. Jones (1992) proposes the so-called quantile density, qt = Q′
t,

which is only constrained to be nonnegative. The definition of the quantile density implies:

qt(s) = Q′
t(s) = (F−1

t )′(s) =
1

F ′
t(F

−1
t (s))

=
1

ft(Qt(s))
, s ∈ (0, 1).

Then, an unconstrained representation for a distribution is obtained by taking the log

of the quantile density: this gives the LQD

Xt(s) = log(qt(s)) = − log(ft(Qt(s))), s ∈ (0, 1). (3)

One drawback of Petersen and Müller (2016) is that all densities are assumed to have

the same support to enable the LQD in the L2 space to be mapped back to the density

space. However, this assumption is sometimes too restrictive, and fails to hold in some

applications. In a follow-up study, Kokoszka et al. (2019) proposed a modified LQD trans-

formation that allows for densities with different supports to be transformed to functions

on a common domain. The only requirement for their modified LQD transformation is that

the intersection of all the densities’ supports contains a known point.

In our study, the densities of professional survey respondents’ forecasts of inflation

at different times t do not have the same support: the minimum and maximum of the

inflation forecasts are not the same across quarters. Nevertheless, we can use the Petersen

and Müller (2016) version of the LQD transformation, rather than the modified version.

This is because we are interested in how the distribution of individuals’ forecasts may affect

a particular respondent, and we do not need to invert LQD back to the density space. Thus,

the inversion step of Petersen and Müller (2016) is not needed in our study.7

Another consideration is whether or not to remove outliers. Technically, it becomes

necessary to remove outliers when working with the LQD. This is because LQD can go

to infinity if any s ∈ (0, 1) gives ft(Qt(s)) = 0. Keeping extreme outliers can bring this

troublesome issue to the fore. For this reason, outliers at the 1% level in each quarter t for

7However, the Kokoszka et al. (2019) modified LQD transformation would not be applicable in any case
because the intersection of all densities’ supports does not contain a known point.
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a given h are removed.8

In order to evaluate the stationarity of the series of LQD, we applied the functional

KPSS test9 developed in Horváth et al. (2014) separately for h = 0, 1, 2, 3, 4. The p-value

of the null hypothesis of stationarity is as follows: 0.241 (h = 0), 0.451 (h = 1), 0.417

(h = 2), 0.258 (h = 3), and 0.140 (h = 4). The results suggest that it is reasonable to

assume the series of LQD are stationary, which provides the justification for the functional

regression model.

A visualization of the cross-sectional LQD of the inflation forecasts at each quarter

of our sample period for h = 1 is provided in the lower panel of Figure 1. The LQD

is typically U-shaped due to the negative sign in its construction (3). Most of the LQD

curves are relatively smooth, but some occasionally have small wiggles. Importantly, we can

observe that the LQD is always in the domain of s ∈ (0, 1), which facilitates the functional

data analysis. We stress that we work with the LQD, rather than the densities, in the rest

of the study.

3 Functional data analysis

In this section we describe our application of FDA to the SPF data. There are two steps.

The first is the use of FPCA to capture the main patterns in the variability of the dis-

tribution of professionals’ forecasts. The second step uses functional linear regression to

determine whether an individual’s forecasts are affected by the forecasts of the other re-

spondents, and which aspects of the distributions of the forecasts of the other respondents

are relevant. One might suppose that the “consensus” view would be important - that is

the mean of the distribution of the forecasts of the other respondents. Although we find a

role for the mean, FDA suggests the findings are more nuanced.

We begin with the basic model. The different forecast horizons reported in the SPF

allow Model (2) to be estimated for left-hand-side forecasts of h = 0, 1, 2, 3.10 Model (2)

8We provide a robustness check of removing outliers at 5% in the Supplement.
9The specific settings we used are the same as Horváth et al. (2019); see their Appendix A for details.

10Technically, h = −1 could also be estimated. However, there is little cross-sectional variation in
Ej,tπt−1. This is because the advance estimate of the previous period has already been officially released,
and is used by most respondents. Thus we do not include h = −1 in the analysis. Note that h = 0 means
a “forecast” for the current quarter, which is typically termed as nowcasting.
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can be written in full for each h as:

Ej,tπt = ζj,0 + βj,0Ej,tπt+1 +

∫
γj,0(s)Xt+1|t−1(s)ds+ αj,0Ej,tut + ej,t,0,

Ej,tπt+1 = ζj,1 + βj,1Ej,tπt+2 +

∫
γj,1(s)Xt+2|t−1(s)ds+ αj,1Ej,tut+1 + ej,t,1,

Ej,tπt+2 = ζj,2 + βj,2Ej,tπt+3 +

∫
γj,2(s)Xt+3|t−1(s)ds+ αj,2Ej,tut+2 + ej,t,2,

Ej,tπt+3 = ζj,3 + βj,3Ej,tπt+4 +

∫
γj,3(s)Xt+4|t−1(s)ds+ αj,3Ej,tut+3 + ej,t,3, s ∈ (0, 1),

(4)

where constant terms have been added, andXt+h+1|t−1 is the LQD of the individual forecasts

made at time t−1 of the value of inflation at time t+h+1. As written, the model parameters

vary across respondent j and horizon h. Following Jain (2019) and Clements (2023), we

assume the parameters are the same across h for a given respondent, giving rise to more

precise parameter estimates. Doing so gives the “pooled” version of Model (2), written as:

Ej,tπt+h = ζj + βjEj,tπt+h+1 +

∫
γj(s)Xt+h+1|t−1(s)ds+ αjEj,tut+h + ej,t, for h = 0, 1, 2, 3.

(5)

In the Supplement we show the results of allowing for horizon fixed effects. Generally doing

so makes little differences, justifying their omission in what follows.

We could further restrict the heterogeneity in the parameters by assuming the “slope”

parameters are the same across respondents in either (4) or (5) (and possibly using a fixed-

effects panel data estimator). We prefer not to impose slope homogeneity across j, so

do not use a panel estimator. Both Jain (2019) and Clements (2023) report considerable

heterogeneity across j: Jain (2019) reports heterogeneity in respondents’ beliefs regarding

inflation persistence, and Clements (2023) considers the extent to which heterogeneity in

individuals’ beliefs in the Phillips curve reflects differing economic conditions when they

were active survey participants.

The first step of the functional principal component regression applies FPCA to the

Xt+h+1|t−1, to obtain empirical functional principal components (EFPC’s) and their cor-

responding scores. The second step replaces the term in Xt+h+1|t−1 in (4) and (5) by the

scores, recasting the scalar-on-function regression in a multiple regression framework.

3.1 Functional principal component analysis

Given that FPCA may not be widely known, and to make our study self-contained, we

provide a brief summary in the context of our study.

At time t, all the respondents’ forecasts are collected, and the corresponding LQD of the
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cross-sectional distribution is obtained, and denoted as Xt(s), s ∈ (0, 1). Xt(s) is assumed

to be square integrable with the condition E
∫
Xt(s)ds <∞, and thus it can regarded as a

functional observation in the L2 space. The sample {X1(s), X2(s), ..., XT (s)} is a sequence

of functional observations, and can be viewed as the realizations of a random function X(s).

We can define the population mean and covariances of the random function X (s) as:

µ(s) = EX(s),

c(s, s′) = E [(X(s)− µ(s)) (X(s′)− µ(s′))] .

Based on Mercer’s lemma (Riesz et al., 1990), there exists an orthonormal sequence of

continuous functions vk(s) in the sense that:

∫
vk(s)vℓ(s)dt =

{
0 if k ̸= ℓ,

1 if k = ℓ,

and a non-increasing sequence λk of positive numbers, such that:

c(s, s′) =
∞∑
k=1

λkvk(s)vk(s
′).

Typically, we obtain vk(s) as the eigenfunctions of the covariance function c, which are

also called functional principal components (FPCs), and the λk are the eigenvalues of c,

in non-increasing order λ1 ≥ λ2 ≥ · · · ≥ 0. By the Karhunen-Loève expansion (Karhunen,

1947; Loève, 1960), one can decompose the random function X(s) as:

X(s) = µ(s) +
∞∑
k=1

ξkvk(s),

The random variables ξi are called the (principal component) scores, which are given

by the projection of (X(s)− µ(s)) in the direction of the k-th eigenfunction vk(s)

ξk =

∫
(X(s)− µ(s)) vk(s)ds.

It can be shown that

Eξk = 0, Eξ2 = λk, Cov(ξk, ξℓ) = 0, if k ̸= ℓ,

and

E
∫

(X(s)− µ(s))2 ds =
∞∑
k=1

λk.
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Thus, it follows that λk is the variance of random function X(s) in the direction of the k-th

eigenfunction vk(s), and the sum of all λk is the total variance of X(s).

In terms of estimation, the estimators of the population mean and covariance functions

are the sample mean and covariance functions, defined by

µ̂(s) =
1

N

T∑
t=1

Xt(s),

ĉ(s, s′) =
1

N

T∑
t=1

[(Xt(s)− µ̂(s)) (Xt(s
′)− µ̂(s′))] .

The eigenfunctions of the sample covariance function ĉ are the empirical functional

principal components (EFPC’s):

ĉ(s, s′) =
∞∑
k=1

λ̂kv̂k(s)v̂k(s
′),

where λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 are the sample eigenvalues of ĉ(s, s′). Then via the Karhunen-

Loève expansion, the functional observations {X1(s), ..., XT (s)} can be decomposed as:

Xt(s) = µ̂(s) +
∞∑
k=1

ξ̂k,tv̂k(s),

= µ̂(s) +
K∑
k=1

ξ̂k,tv̂k(s) + et(s), t = 1, 2, ..., T (6)

where ξ̂k,t =
∫
(Xt(s)− µ̂(s)) v̂k(s)ds are the estimated (principal component) scores in

the direction of the k-th eigenfunction for the t-th observation. When K < T denotes the

number of retained EFPCs, the et(s) represents the truncation error function, and has a

zero mean and finite variance.

Equation (6) illustrates the dimension reduction from infinity to a finite number K.

This requires that the functional observation Xt(s) can be well approximated from the first

K EFPCs: that is, the information contained in functional observations {X1(s), ..., XT (s)}
can be effectively summarized by the finite-dimensional scores

{
ξ̂1, ..., ξ̂T

}
, where ξ̂t =(

ξ̂1,t, ..., ξ̂K,t

)⊤
. These scores have zero mean and variance λ̂k, and they are uncorrelated

with each other.

A practical question is how to chooseK. Several criteria have been proposed: eigenvalue

ratio tests (Ahn and Horenstein, 2013), cross-validation (Ramsay and Silverman, 2005),

Akaike’s information criterion (Akaike, 1974), the bootstrap method (Hall and Vial, 2006),

and the cumulative percentage of variance (CPV) explained (Horváth and Kokoszka, 2012).
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CPV is commonly used (Kearney and Shang, 2020; Bouri et al., 2021; Shang and Kearney,

2022). The CPV explained by the first K EFPC’s is computed by:

CPV(K) =

∑K
k=1 λ̂k∑T
k=1 λ̂k

.

We use the CPV method to select the number of K, and choose K such that at least 80%

of the total variance is explained.

Empirical results of FPCA

Figure 2 shows the variance explained by each of the principal components, and the cumu-

lative variance, for the pooled (over h) data. Three EFPC’s (i.e. K = 3) are sufficient to

reach the threshold of explaining 80% of the total variance.
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Figure 2: CPV explained by the principal components for the pooled data.

Figure 3 shows the EFPC’s for the pooled (over h) cross-sectional distributions, and

Figure 4 displays their corresponding scores for different horizons. The scores in Figure 4

are calculated with respect to the common EFPC’s obtained from the pooled data.

A challenge often encountered in FDA is how to interpret the FPCA, and in particular,

the EFPCs. (Similar issues arise of course in standard principal component analysis). The

EFPCs are orthonormal to one another, but may not be readily interpretable (Kokoszka

and Reimherr, 2017). The conventional way of interpreting the scores is to consider their

correlation (linear or rank-based) with other known factors or quantities. A relatively high

correlation is generally taken to suppose a tentative interpretation of the score in terms of

that factor or quantity.
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Figure 3: EFPC’s for the pooled cross-sectional distributions.

Table 2 shows the estimates of Pearson’s correlation and Spearman’s rho between the

first three estimated scores
(
ξ̂1,t, ξ̂2,t, ξ̂3,t

)
and moments and descriptive statistics of the

cross-sectional distributions11, viz. the mean, median, standard deviation (SD), interquar-

tile range (IQR), skewness, and kurtosis. As can be observed, the first score ξ̂1,t has a

very high Pearson’s correlation (0.94) with the SD measure of disagreement, and a little

lower correlation of 0.83 with the IQR measure. The correlation between the second score

ξ̂2,t and the skewness is relatively high at 0.80. The third score ξ̂2,t is more moderately

correlated with the kurtosis (0.60). Thus, we conjecture that the three scores are related

to the disagreement, skewness, and kurtosis.

In contrast to Pearson’s correlation which evaluates linear correlation, Spearman’s rho

evaluates monotonic relationships (whether linear or not). The Spearman’s rho between

ξ̂1,t and SD is 0.96, between ξ̂2,t and skewness is 0.86, and between ξ̂3,t and kurtosis is

0.75. These are all higher than the corresponding linear correlations, and are indicative of

nonlinear relationships between the scores and the moments (SD, skewness, and kurtosis).

Figure 5 display the scatter plots between the scores and the moments, and the nonlinearity

can be clearly observed. The evidence supports the conjecture that the three scores measure

disagreement, skewness, and kurtosis in a nonlinear manner.

11We did not consider the shape factor used by Meeks and Monti (2019). This is because the calculation
of the shape factor involves the pointwise time average distribution, which may not necessarily be in the
density space, as described in Section 2.2.
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Figure 4: Scores for the pooled cross-sectional distributions.

3.2 Functional regression model

Model (5) admits a functional regression model in the category of “scalar-on-function”,

because one of the regressors is a “curve” and the response variable is scalar. Without im-

posing any regularity conditions, such a regression is infeasible due to the infinite dimension

of the coefficient function γj(·). Reiss et al. (2017) provide a comprehensive review of the

main methods for scalar-on-function regression. As they note, the main idea is to expand

γj(·) in terms of a set of basis functions. The two types of basis functions are: 1) prior

fixed bases, such as the B-spline basis and the Fourier basis; and 2) data-driven bases,

often derived by FPCA or functional partial least squares. If the basis is from FPCA, it is

known as functional principal component regression (FPCR), which is widely used in the

literature (e.g. Meeks and Monti, 2019; Cao et al., 2020). We choose to use FPCR because

of its simplicity and interpretability (as discussed in Section 3.1).
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Table 2: Correlation between EFPC’s and moments

Pearson’s Correlation Spearman’s rho
Score 1 Score 2 Score 3 Score 1 Score 2 Score 3

Mean 0.32 0.10 -0.32 0.08 0.15 -0.33
Median 0.35 0.02 -0.32 0.09 0.06 -0.33
SD 0.94 0.00 -0.05 0.96 0.09 0.01
IQR 0.83 0.07 -0.48 0.78 0.12 -0.49
Skewness -0.29 0.80 -0.06 -0.26 0.86 -0.05
Kurtosis 0.30 -0.06 0.60 0.38 -0.05 0.75

Note: SD stands for standard deviation, and IQR stands for interquartile range.
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Figure 5: Evidence of nonlinearity between the scores and the moments.
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Here we briefly summarize FPCR. According to (6), we can have the approximation:

Xt(s) ≈ µ̂(s) +
K∑
k=1

ξ̂k,tv̂k(s), where ξ̂k,t =

∫
(Xt(s)− µ̂(s)) v̂k(s)ds.

Plugging this approximation into (5) gives:

Ej,tπt+h = ζj + βjEj,tπt+h+1 +

∫
γj(s)

(
µ̂(s) +

K∑
k=1

ξ̂k,tv̂k(s)

)
ds+ αjEj,tut+h + ej,t,

= δj + βjEj,tπt+h+1 +
K∑
k=1

ξ̂k,tγj,k + αjEj,tut+h + ej,t (7)

where:

δj = ζj +

∫
γj(s)µ̂(s)ds, and γj,k =

∫
γj(s)v̂k(s)ds,

and αj and βj are regarded as unknown (scalar) parameters. Now, the functional regression

model (5) is recast as a multiple regression with the scores replacing the curve. Then define

the T × (K + 3) matrix:

Ω =


1 Ej,1π1+h ξ̂1,1 ξ̂2,1 · · · ξ̂K,1 Ej,1u1+h

1 Ej,2π2+h ξ̂1,2 ξ̂2,2 · · · ξ̂K,1 Ej,2u2+h

...
...

...
...

...
...

1 Ej,TπT+h ξ̂1,T ξ̂2,T · · · ξ̂K,T Ej,TuT+h

 ,

so that the parameter vector θ = [δj, βj, γj,1, ..., γj,K , αj]
⊤ can be estimated by least squares

multiple regression of Y = Ωθ+e. If we denote the estimated parameters as δ̂j, β̂j, γ̂j,1, ..., γ̂j,K , α̂j,

then the estimates of the parameters in the functional regression model (5) can be obtained

as:

γ̂j(s) =
K∑
k=1

γj,kv̂k(s), and ζ̂j = δ̂j −
K∑
k=1

γ̂j,k

∫
v̂k(s)µ̂(s)ds. (8)

Empirical results of FPCR

There are in total 256 unique individual respondents in the U.S. SPF dataset for the period

we consider.12 In order to ensure sufficient forecasts to obtain reasonably precise estimates

at an individual level, we select only the respondents who made 120 or more forecasts (for

all h = 0, 1, 2, 3) which is at least 30 forecasts per h on average. This gave 64 respondents.

Then we undertook FPCR for each respondent j, pooling over h for that j.

12The respondents are anonymous in the U.S. SPF, but each has a unique identifier, allowing an analysis
of all the forecasts associated with a given identifier.
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To summarize the results, Figure 6 provides a boxplot of the parameter estimates for

Model (7) for each respondent, and Table 3 presents the summary statistics of parameter

estimates across respondents. We report the cross-sectional mean, standard deviation,

lower quartile, median, and upper quartile for each of the estimated parameters. We also

report the proportion of respondents for whom we reject the null that the coefficient is zero,

at 1%, 5%, and 10% levels. Additionally, we report summary statistics for the adjusted

R2’s and number of observations13.

We summarize our findings as follows. Firstly, as many as a nearly a half of all respon-

dents (45%) appear to use the information in Score 1 when they produce their forecasts.

Since Score 1 is a (nonlinear) measure of disagreement, it appears that disagreement at

t − 1 is an important determinant of around one half of the respondents forecasts made

at time t (of t + h). Forecasters disagreement has often been regarded as a proxy for

perceived (or actual) uncertainty about the future outlook, and may be playing a similar

role in our analysis (see, e.g., Zarnowitz and Lambros (1987) and Haddow et al. (2013)).

For the majority of agents, γ̂j,1 > 0, suggesting that higher inflation disagreement at time

t− 1 results in an increase in j’s forecast made at time t. Empirically this seems plausible

because inflation rates and inflation variability have often been found to be positively cor-

related. The interpretation would be that if inflation disagreement last period (t− 1) was

high, the majority of respondents would increase their time t forecasts of inflation in t+ h

by more than would be suggested by their own forecasts of inflation in t + h + 1 and the

unemployment rate in t+ h.

Secondly, a modest percentage of all respondents (19% at a 5% significance test level)

employ Score 2 in the cross-sectional distribution of all forecasts at t − 1. Recall that

Score 2 nonlinearly measures the skewness in the distribution. Thus, we find evidence

that some respondents take skewness into consideration when they generate their forecasts.

However, the effect of a change in skewness is less amenable to a behavioural interpretation.

The parameter estimates of Score 2 are positive for most agents, albeit not statistically

significantly different from zero. In Section 4 we attempt to shed further light on the

effects of the skew, by allowing the effects of positive and negative skew to differ.

Thirdly, a small portion of respondents (8% at the 5% level) incorporate the information

in Score 3 for their forecasts. As discussed, Score 3 is nonlinearly related to the kurtosis of

the distribution.

As described above, FDA provides a number of insights into how respondents’ forecasts

are influenced by those of others. An overall test of the significance of the FPCA scores in

the FPCRs is one way of assessing the importance of applying FDA to the analysis of macro

survey expectations. We calculated an F-test of γj,1 = γj,2 = γj,3 = 0 for each respondent.

13Since we pool all h, the number of observations for one respondent is required to be at least 120.
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We rejected the null for nearly half of the respondents at the 5% level. Hence we find that

nearly one half of the respondents use information contained in the distribution of other

individuals’ forecasts.
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Figure 6: Boxplot of the parameter estimates

Table 3: Summary of parameter estimates of Model (7) across Respondents

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.758 0.749 0.333 0.816 1.073 46.9% 60.9% 75.0%
CPI 0.825 0.300 0.679 0.875 1.021 95.3% 96.9% 96.9%
Score 1 0.092 0.462 -0.220 0.167 0.356 28.1% 46.9% 56.3%
Score 2 0.364 0.454 0.033 0.280 0.576 6.3% 18.8% 28.1%
Score 3 0.000 0.475 -0.206 0.012 0.250 4.7% 7.8% 10.9%
UNEMP -0.068 0.069 -0.098 -0.057 -0.016 32.8% 39.1% 45.3%

F-test on Scores 1-3 25.0% 45.3% 53.1%
Adj. R2 46.8% 25.0% 28.5% 46.9% 63.7%
No. of Obs. 243.5 89.6 162.8 223.0 312.8
Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3), for each respondent j. For each parameter, we present the summary statistics of the
cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.),
median, and upper quartiles (u.q.). In the last three columns, we report the proportion of the 64
regressions for which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and
10% levels.

Characteristics of Respondents

Of interest is whether we are able to identify the characteristics of respondents which are

correlated with the tendency to draw on information contained in (the distribution of) the
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forecasts of others. To investigate this question, we firstly select five characteristics which

might potentially be relevant. They include measures of various aspects of the strength of

the Phillips curve “imprint” on the forecasts.14 That is, the extent to which an individual’s

inflation and unemployment rate forecasts reveal a belief that higher “slack” in the economy

puts downward pressure on inflation. The characteristics are:

� α̂j: Respondent j’s estimated parameter of the unemployment rate in Model (5),

� sign(α̂j): the sign of α̂j,

� β̂j: Respondent j’s estimated parameter of the inflation rate in Model (5),

� Periodj: the proportion of Respondent j’s forecasts made in the earlier two decades

(1981:Q3 – 1999:Q4) of the sample period,

� σ̃j: an uncertainty measure of Respondent j’s forecasts across h = 0, 1, 2, 3.

Hence the first three characteristics are based on the individual’s estimates of Model (5),

and capture how respondent j believes future inflation is related to the unemployment rate.

Following Clements (2023), we include an indicator (Periodj) of whether the respondent

was primarily active earlier or later in the period. Higher values of Periodj indicate that

the respondent made a larger proportion of their forecasts in the earlier period (1981:Q3 –

1999:Q4). A value of zero indicates that an individual was only active in the 21st century

(2000:Q1 – 2022:Q3). We wish to allow for the possibility that the inflation process might

have changed over the near 40 year period we consider, with a concomitant change in

forecaster behavior. Finally, the fifth characteristic is a measure of the uncertainty of

Respondent j’s forecasts, calculated by σ̃j = 1
4

∑3
h=0

√
Var(Ej,tπt+h). This measures the

volatility of Respondent j’s forecasts.15

Table 4 shows summary statistics (the mean, standard deviation, and the number of

respondents) of the five respondent-specific characteristics separately for the “significant”

and the “insignificant” groups, according to each of Score 1, Score 2, and Score 3 (and

jointly). That is, for Score 1 we separate the respondents into the group for whom we reject

14Recall that the respondents are anonymous, precluding analysing the effects of personal characteristics.
15An alternative would be to use the respondents’ histogram forecasts to generate measures of perceived

uncertainty, as described by Clements et al (2022). Complications would arise in doing so, in particular
because the histograms are fixed-event and target the annual year-on-year growth rates, in contrast to
the fixed-horizon quarterly point forecasts, but see Ganics et al. (2023) on deriving series of fixed-horizon
forecasts from fixed-event forecasts. This is potentially interesting because one might conjecture that
an individual’s perceptions of uncertainty will vary over time and that more weight would be accorded
to the forecasts of others at times of high perceived uncertainty. We do not pursue this here, but we
consider whether reliance on others varies across the business cycle (with expansions/contractions being
correlated with low/high uncertainty), and in the Supplement we check whether our findings are robust to
the inclusion of VIX, as a general measure of uncertainty.
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the null that Score 1 is statistically insignificant at the 5% level, and a group comprising

those for whom we do not reject. We then consider whether each of the five characteristics

differ between the two groups. And then we repeat for Score 2, etc. The last row in each

panel of Table 4 presents the p-value of the Welch Two Sample t-test. Based on the Welch

Two-Sample t-test, there is no significant difference in the mean of α̂j and σ̃j. However, we

find strong evidence that the mean of sign(α̂j) is higher in the “significant group” for Score

2, Score 3, and for the group for which we reject for all the Scores together. This indicates a

positive association between believing that higher economic slack reduces inflation pressure

and paying heed to the forecasts of others (at least as measured by Scores 2 and 3). Put

differently, a stronger belief in the Phillips curve (measured by a negative unemployment

rate coefficient in the Phillips curve model) is correlated with being influenced by the

forecasts of others. It is not obvious why “theory-consistency” and “paying attention to

others” should go together, and this merits further investigation.

We find little evidence that β̂j varies across the significant and insignificant groups for

the Scores, except for the Score 2 (with a 1.4% p-value for the Two-Sample t-test).

4 Robustness checks

We have made a number of modeling choices in deriving the results in Section 3. In

this section we consider the robustness of those findings to various alternative choices and

extensions, with a key emphasis on whether the application of FDA provides additional

insight into forecaster behavior relative to the use of non-FDA methods. To this end, the

first set of checks include the “consensus forecast”, i.e., the mean of the cross-sectional

distribution forecasts, in the individual Phillips curve models (Section 4.1), and we also

include the higher cross-sectional moments (Section 4.2).

Next, we allow for the possibility that a simple linear relationship may not hold over

the whole sample period, as suggested by Fendel et al. (2011) and others (albeit that

Fendel et al. (2011) consider consensus forecasts as opposed to forecasts at the level of the

individual). In Section 4.3 we allow for the possibility that the relationship differs between

“normal” and “abnormal” times, where these descriptors are made operational as NBER-

dated expansions and contractions. Finally, some authors suggest modelling inflation in

“gaps” (see, e.g., Faust and Wright (2013)), and we check the robustness of our findings to

adopting such a formulation for respondents’ inflation forecasts in Section 4.4.

In an Online Supplement, we provide robustness checks additional to those included

here: namely, we replace the expectations-augmented Phillips curve by a hybrid-Phillips

curve model; decompose Score 2; consider the effects of allowing horizon fixed effects; of

including VIX in the Phillips curve models; of specifying the Phillips curve models with
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Table 4: Difference between respondents’ characteristics

α̂j sign(α̂j) β̂j Periodj σ̃j
Score 1 Significant Group mean -0.08 -0.80 0.86 0.21 1.03

sd (0.07) (0.61) (0.32) (0.28) (0.30)
no. of respondent 30 30 30 30 30

Insignificant Group mean -0.06 -0.71 0.80 0.33 1.13
sd (0.06) (0.72) (0.28) (0.39) (0.32)
no. of respondent 34 34 34 34 34

Two-Sample t-test p-value 31.8% 57.3% 42.8% 13.9% 21.1%

Score 2 Significant Group mean -0.05 -1.00 0.64 0.23 1.16
sd (0.05) (0.00) (0.25) (0.27) (0.29)
no. of respondent 12 12 12 12 12

Insignificant Group mean -0.07 -0.69 0.87 0.28 1.07
sd (0.07) (0.73) (0.30) (0.36) (0.32)
no. of respondent 52 52 52 52 52

Two-Sample t-test p-value 31.8% 0.4% 1.4% 61.2% 33.2%

Score 3 Significant Group mean -0.09 -1.00 0.80 0.37 1.19
sd (0.10) (0.00) (0.29) (0.39) (0.43)
no. of respondent 5 5 5 5 5

Insignificant Group mean -0.07 -0.73 0.83 0.27 1.07
sd (0.07) (0.69) (0.30) (0.34) (0.30)
no. of respondent 59 59 59 59 59

Two-Sample t-test p-value 70.9% 0.4% 82.3% 60.4% 57.0%

F-test on Significant Group mean -0.08 -0.93 0.79 0.25 1.08
Scores 1-3 sd (0.06) (0.37) (0.28) (0.29) (0.29)

no. of respondent 29 29 29 29 29

Insignificant Group mean -0.06 -0.60 0.85 0.29 1.09
sd (0.08) (0.81) (0.32) (0.39) (0.34)
no. of respondent 35 35 35 35 35

Two-Sample t-test p-value 33.2% 3.6% 44.9% 65.7% 89.6%
Note: This table shows the mean, the standard deviation, and the number of respondents of the five
respondents’ characteristics in the significant group and the insignificant group, according to Score 1, Score
2, and Score 3, individually and jointly. The last row in each panel of this table shows the p-value of the
Welch Two-Sample t-test.
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the unemployment rate gap; and the treatment of outliers.

4.1 Including the cross-sectional mean of the inflation forecasts

A potential issue with our analysis is that we have not included the “consensus forecast”

in the models for each individual’s inflation forecasts. The consensus is often taken to be

the (cross-sectional) mean. Our FPCA scores are not highly correlated with the cross-

sectional mean of the inflation forecasts (see Table 2), and hence would not appear to be

simply capturing the effect of the mean.16 Nevertheless, to determine whether its exclusion

accounts for the significance of the scores (e.g., if the disagreement and the level of inflation

were highly correlated), we run:

Ej,tπt+h = βjEj,tπt+h+1 + θjMt+h+1|t−1 +
3∑

k=1

ξ̂k,tγj,k + αjEj,tut+h + ej,t, (9)

where

Mt+h+1|t−1 =
1

Nt−1

Nt−1∑
j=1

Ej,t−1πt+h+1,

is the cross-sectional mean, and Nt−1 is the number of forecasts made at t− 1 for πt+h+1.

Table 5 presents the summary statistics (across j) for Model (9) estimated for each

respondent. The percentage of F-test rejections is a little lower, at 38% compared to 45%,

but clearly the exclusion of the mean does not account for the relevance of the scores for

most respondents.

4.2 Including higher cross-sectional moments of the inflation forecasts

Our second robustness check acknowledges that the FPCA scores are highly correlated

(whether linearly or not) with the higher moments (SD, skewness, and kurtosis) of the

cross-sectional distribution of the inflation forecasts in Section 3.1. Hence we examine the

extent to which the scores contain additional information, after controlling for the higher

moments. To this end, we run the regression:

Ej,tπt+h = βjEj,tπt+h+1 + ψjmomt+h+1|t−1 +
3∑

k=1

ξ̂k,tγj,k + αjEj,tut+h + ej,t, (10)

where momt+h+1|t−1 corresponds to one of the higher cross-sectional moments (SD, skew-

ness, and kurtosis) of the forecasts made at t− 1 for πt+h+1.

16There are a number of reasons why one might in principle expect the mean to be a relevant variable:
see, for example, Clements (2018).
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Table 5: Summary of parameter estimates of Model (9)

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept -0.200 1.037 -0.746 -0.032 0.358 18.8% 32.8% 40.6%
CPI 0.706 0.288 0.541 0.731 0.921 92.2% 93.8% 95.3%
Mean 0.499 0.433 0.183 0.400 0.756 54.7% 73.4% 79.7%
Score 1 0.099 0.454 -0.158 0.178 0.327 26.6% 34.4% 48.4%
Score 2 0.049 0.458 -0.185 0.039 0.243 4.7% 9.4% 15.6%
Score 3 -0.004 0.444 -0.164 0.016 0.223 3.1% 7.8% 9.4%
UNEMP -0.055 0.082 -0.099 -0.053 -0.004 23.4% 42.2% 51.6%

F-test on Scores 1-3 18.8% 35.9% 40.6%
Adj. R2 49.3% 24.3% 29.1% 50.8% 66.6%
No. of Obs. 243.5 89.6 162.8 223.0 312.8
Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3), for each respondent. For each parameter, we present the summary statistics of the
cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.),
median, and upper quartiles (u.q.). In the last three columns, we report the proportion of the 64
regressions for which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and
10% levels.

Table 6 provides the summary statistics for Model (10) for each respondent. Firstly, we

observe that SD is statistically significant (at the 5% level) for 41% of respondents, which is

perhaps as expected given that SD is a standard linear measure of forecaster disagreement.

Despite Score 1 being highly correlated with SD, it is still statistically significant (at the

5% level) for 25% of the respondents, indicating it contains useful additional information

even after controlling for SD. Secondly, the percentage for whom Score 2 is statistically

significant is a little reduced (at 13% from 19%), after controlling for the cross-sectional

skewness. Thirdly, the cross-sectional kurtosis is generally not significant (the percentages

of rejections are less than significance levels). Lastly, the F-test rejection rate (of the three

scores taken together) is reduced to 25% after controlling for SD, marginally reduced to

37.5% after controlling for skewness, and remains the same at 45.3% after controlling for

kurtosis. Overall, we conclude that our FPCA scores not only partly reflect the cross-

sectional moments, but also include valuable additional information from the distribution

of individuals’ forecasts.

4.3 Normal versus Abnormal times

We define the Abnormal times as the quarter before the onset of a recession, the reces-

sionary period itself, and the quarter following the end of a recession, where recessions

are dated from NBER US Business Cycle Expansions and Contractions.17 Other periods

17https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions, ac-
cessed on 18 Nov 2023. We are grateful to an anonymous referee for this suggestion.
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Table 6: Summary of parameter estimates of Model (10)

Controlling SD
mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.977 1.233 0.270 0.813 1.657 37.5% 48.4% 53.1%
CPI 0.809 0.289 0.677 0.849 1.013 95.3% 96.9% 96.9%
SD -0.279 1.435 -1.210 -0.131 0.611 18.8% 40.6% 46.9%
Score 1 0.325 0.881 -0.239 0.268 0.971 9.4% 25.0% 35.9%
Score 2 0.386 0.473 0.033 0.297 0.654 10.9% 26.6% 32.8%
Score 3 0.092 0.556 -0.148 0.003 0.405 4.7% 15.6% 21.9%
UNEMP -0.066 0.068 -0.099 -0.051 -0.011 32.8% 39.1% 45.3%

F-test on Scores 1-3 14.1% 25.0% 42.2%
Adj. R2 47.6% 24.7% 29.8% 47.6% 64.1%
No. of Obs. 243.5 89.6 162.8 223.0 312.8

Controlling Skewness
mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.757 0.759 0.302 0.820 1.079 45.3% 62.5% 75.0%
CPI 0.824 0.303 0.680 0.868 1.030 95.3% 96.9% 98.4%
Skewness -0.036 0.148 -0.108 -0.036 0.002 1.6% 7.8% 12.5%
Score 1 0.062 0.459 -0.187 0.131 0.388 18.8% 39.1% 45.3%
Score 2 0.516 0.767 0.158 0.385 0.986 0.0% 12.5% 23.4%
Score 3 -0.025 0.467 -0.220 0.018 0.236 4.7% 9.4% 10.9%
UNEMP -0.068 0.070 -0.100 -0.055 -0.015 32.8% 39.1% 45.3%

F-test on Scores 1-3 18.8% 37.5% 48.4%
Adj. R2 46.8% 24.8% 28.3% 46.7% 64.0%
No. of Obs. 243.5 89.6 162.8 223.0 312.8

Controlling Kurtosis
mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.740 0.742 0.291 0.772 1.052 40.6% 57.8% 65.6%
CPI 0.824 0.300 0.679 0.878 1.025 95.3% 96.9% 96.9%
Kurtosis 0.008 0.026 -0.003 0.006 0.017 1.6% 3.1% 9.4%
Score 1 0.078 0.455 -0.215 0.170 0.347 21.9% 37.5% 53.1%
Score 2 0.365 0.452 0.027 0.278 0.592 7.8% 20.3% 29.7%
Score 3 -0.075 0.649 -0.383 -0.074 0.188 3.1% 12.5% 17.2%
UNEMP -0.071 0.070 -0.107 -0.056 -0.018 32.8% 42.2% 48.4%

F-test on Scores 1-3 28.1% 45.3% 51.6%
Adj. R2 46.7% 25.0% 28.3% 46.6% 64.1%
No. of Obs. 243.5 89.6 162.8 223.0 312.8
Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h = 0, 1, 2, 3),
for each respondent. For each parameter, we present the summary statistics of the cross-sectional
distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.), median, and
upper quartiles (u.q.). In the last three columns, we report the proportion of the 64 regressions for
which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and 10% levels.

25



are Normal times. We could just as well define Abnormal times as periods of high un-

certainty, and Normal times as low uncertainty, given that uncertainty is typically found

to be higher in recessions.18 We run our baseline regression of Model (7) separately for

the two subperiods, and the results are presented in Table 7. Our findings suggest the

responsiveness of inflation to unemployment is greater in high-uncertainty (recessionary)

periods: the mean coefficient on the unemployment rate is −0.188, compared to −0.043 in

low-uncertainty (expansionary) periods. However, the FDA scores have a greater impact

in low uncertainty Normal times. The rejection of the F -test (for scores 1-3) is 50.0% for

the low economic uncertainty subperiod, and 12.5% for the subperiod of high economic

uncertainty. In Normal times forecasters are more attentive to others and put less weight

on their own unemployment rate forecasts. Given that Normal time observations outnum-

ber Abnormal times approximately 4:1, the former periods hold greater sway and drive the

baseline findings for the whole period. These findings are suggestive of differences in fore-

caster behaviour in the two different environments, and merit further research. However,

the average number of observations is much smaller in the high-uncertainty recessionary

periods, which will at least partially explain differences in statistical significance (e.g., of

the F -test of scores 1-3.

4.4 Regression based on the inflation gap

Our inflation-gap formulation of the Phillips curve model is:

Ej,tπt+h − Ej,tτt = δj + βj(Ej,tπt+h+1 − Ej,tτt) +
3∑

k=1

ξ̂k,tγj,k + αjEj,tut+h + ej,t, (11)

where Ej,tτt is respondent j’s forecast of the trend rate of inflation at time t. This is the

long-horizon forecast CPI inflation rate, which does not depend on h.

To empirically construct the variable Ej,tτt, we use the combination of SPF ten-year CPI

inflation forecasts and Blue Chip Economic Indicators. For the period 1991:Q4 to 2022:Q2

inclusive, we use the individual forecasts of average ten-year CPI inflation (CPI10). Prior

to 1991:Q4 this variable was not collected, and for the surveys from 1981:Q3 to 1991:Q3,

we use the twice yearly long-term inflation forecasts from Blue Chip Economic Indicators,

made available on the SPF web site (as Additional-CPIE10.xslx). We lag the data, so that

the 1981:Q3 survey uses the 1981:Q2 Blue Chip figure, etc. Thus the trend inflation rate

varies across respondents from 1991:Q4 onwards, but prior to that date is the same for all

respondents.

18In the Supplement we also check whether our findings are robust to an uncertainty measure relating to
broad economic conditions, which might proxy judgmental adjustment - see Croushore and Stark (2019).
We are grateful to an anonymous referee for this suggestion.
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Table 7: Summary of parameter estimates of Model (7) across respondents during high/low
economic uncertainty

High economic uncertainty

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 1.607 3.346 0.000 0.924 2.170 17.2% 29.7% 35.9%
CPI 0.814 0.598 0.531 0.892 1.158 65.6% 73.4% 81.3%
Score 1 -0.222 1.311 -0.587 -0.037 0.511 3.1% 20.3% 32.8%
Score 2 -0.021 1.109 -0.592 -0.010 0.684 0.0% 6.3% 10.9%
Score 3 0.838 1.595 -0.047 0.909 1.862 1.6% 7.8% 14.1%
UNEMP -0.188 0.441 -0.242 -0.093 -0.013 21.9% 34.4% 45.3%

F-test on scores 1-3 3.1% 12.5% 14.1%
Adj. R2 47.7% 26.6% 28.0% 46.2% 69.2%
No. of Obs. 46.0 18.5 35.0 48.0 60.0

Low economic uncertainty

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.811 0.841 0.270 0.739 1.179 50.0% 54.7% 62.5%
CPI 0.741 0.360 0.602 0.805 0.992 85.9% 87.5% 89.1%
Score 1 0.146 0.408 -0.076 0.172 0.423 28.1% 39.1% 46.9%
Score 2 0.438 0.478 0.088 0.305 0.655 15.6% 31.3% 35.9%
Score 3 -0.015 0.516 -0.282 0.007 0.240 3.1% 14.1% 14.1%
UNEMP -0.043 0.060 -0.090 -0.040 -0.005 18.8% 34.4% 42.2%

F-test on scores 1-3 32.8% 50.0% 59.4%
Adj. R2 46.0% 27.5% 24.8% 47.7% 65.9%
No. of Obs. 197.5 74.2 132.0 180.0 253.0

Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3) during subperiods of high/low economic uncertainty, for each respondent j. For each
parameter, we present the summary statistics of the cross-sectional distribution over j, including
mean, standard deviation (s.d.), lower quartiles (l.q.), median, and upper quartiles (u.q.). In the
last three columns, we report the proportion of the 64 regressions for which we reject the null
hypothesis of the parameter equal to zero at 1%, 5%, and 10% levels.
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Table 8 shows the summary of parameter estimates of Model (11) across respondents.

Compared to our baseline results, there is a marginal reduction in the percentage of re-

jections of the t-test of Score 1, and of the F -test of all scores together. However, the

percentage of rejections for the t-test of Score 3 is almost doubled, from 7.8% to 15.5%.

We conclude that adoption of an inflation gaps formulation does not qualitatively alter our

findings.

One might argue that the unemployment rate term should enter as a ‘gap’, that is,

inflation rate forecasts depend on the difference between the unemployment rate and the

natural rate. However, forecasts of the natural rate were only collected by the U.S. SPF

from 1996:Q3 onwards, and then only for the third-quarters of the year. Clements (2023)

uses the estimate of the natural rate available at the time of the survey as the forecast,

and finds the results are little affected. In the Supplement we replace the forecast of the

unemployment rate with the first difference of the unemployment rate forecast, with little

change to the results.

Table 8: Summary of parameter estimates of Model (11) across respondents

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.349 0.479 0.072 0.322 0.632 34.5% 43.1% 50.0%
CPI Gap 0.752 0.282 0.576 0.785 0.949 93.1% 94.8% 98.3%
Score 1 0.035 0.494 -0.192 0.110 0.317 27.6% 37.9% 48.3%
Score 2 0.344 0.439 0.097 0.258 0.563 3.4% 17.2% 27.6%
Score 3 0.039 0.431 -0.127 0.064 0.274 3.4% 15.5% 19.0%
FD UNEMP -0.074 0.071 -0.119 -0.069 -0.025 36.2% 44.8% 56.9%

F-test on scores 1-3 27.6% 39.7% 50.0%
Adj. R2 38.7% 24.0% 20.0% 35.1% 48.2%
No. of Obs. 232.9 84.0 161.0 212.0 285.8

Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3), for each respondent j. For each parameter, we present the summary statistics of the
cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.),
median, and upper quartiles (u.q.). In the last three columns, we report the proportion of the 64
regressions for which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and
10% levels.

5 Conclusions

We have set out a way of applying FDA to a specific application using survey expectations,

but as we expand on below, expect FDA to be useful more widely when analyzing survey

expectations data. We estimate Phillips curve models at an individual level for a sample

of respondents to the U.S. SPF over the last 40 years. While there is evidence that some

respondents’ inflation and unemployment rate forecasts conform to the belief that higher
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unemployment has a moderating influence on inflation, it is also plausible to suppose that

an individual forecaster may be influenced by the forecasts of others. We use FDA to allow

the data to determine the way in which the forecasts of others impact the individual’s

forecasts. We find that for nearly a half of the professional forecasters in the sample there

is a role for the earlier inflation forecasts of the other respondents.

We assess whether the FDA “scores” are simply capturing the first and second-moments

of the cross-sectional distribution of prior forecasts. One might suppose that forecasters

adjust their forecasts towards (i.e., “herd on”) the consensus view. Or indeed deliberately

move away form the consensus position (“anti-herd”). However, the FDA scores transpire

to be statistically significant for some respondents even when the consensus forecast is

explicitly included. In fact, they remain significant for some respondents even when the

cross-sectional standard deviation and higher moments of the forecast distribution are

included. The FDA scores appear to capture useful additional information, even though

they are correlated with interpretable characteristics of the cross-sectional distribution,

such as the standard deviation, or “disagreement”.

Alongside the empirical application, we provide a discussion of some aspects of FDA in

the hope that this will encourage its wider use. We know of only one other study that makes

use of FDA with survey expectations data (Meeks and Monti (2019)), and its application

in economics more generally has been more limited (but see the papers referred to in the

Introduction) than in some other disciplines.

Although we have provided one application of the use of FDA - to determine whether

Phillips curve models of respondents’ inflation and unemployment rate forecasts also allow

a role for others’ forecasts - we suspect FDA could be usefully applied to a number of areas

in the analysis of survey expectations. These would be relatively simple to implement, given

the approach to applying FDA to survey expectations described in this paper. They might

include: testing fixed-event forecast rationality, following Nordhaus (1987) and Clements

(1995), inter alia; testing expectations for over-reaction to new information; and an explicit

testing of herding behavior. The first might be accomplished by regressing a forecast

revision, say, the change in j’s forecasts of πt+h between forecast origins t − 1 and t,

namely, Ej,tπt+h − Ej,t−1πt+h, on the forecasts of others made at time t − 2, expressed in

general terms as
∫
γj (x) dFt+h|t−2(x) (c.f., (2)). The flexible parameterization of others’

expectations accorded by FDA might also be useful in the recent literature on the over-

reaction to new information (see, e.g., Bordalo et al. (2020), Kohlhas and Walther (2021)

and Broer and Kohlhas (2021)) as a source of new information, and also in the literature on

herding (see e.g., Clements (2018), which tends to rely on the consensus or mean forecast).

FDA is found to provide a sound statistical framework within which to address the issues

of interest. In some instances, as here, it may prove a useful complement to alternative
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approaches, such as choosing a selection of moments from the cross-sectional distribution

of responses. Whether it ends up complementing or simply replacing such approaches, in

any instance, it has the potential to improve practice.
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SUPPLEMENT

This is the supplementary material for the article “Do Professional Forecasters’ Phillips

Curves Incorporate the Beliefs of Others?”. In Section A we present the results for a

hybrid-Phillips curve model. In Section B, we decompose Score 2 into positive and negative

parts. Section C checks for horizon fixed effects, and Section D whether our findings are

robust to allowing for a measure of the uncertainty concerning the economic environment.

In Section E we replace the unemployment rate with the difference of the unemployment

rate to proxy the unemployment rate gap, and finally, in Section F consider the robustness

of the results to the treatment of outliers.

A The specification of the Phillips curve model

From a theoretical perspective, a Phillips curve model with a forward-looking inflation term

is better grounded than one with a backward-looking term, although one could consider

a hybrid-Phillips curve model which includes both. For example, Clements (2023) used a

hybrid-Phillips curve model that includes both a forward looking term (Ej,tπt+h+1) and a

backward looking term (Ej,tπt+h−1). Following this approach, we modify our model (7) to

a hybrid-Phillips curve version as:

Ej,tπt+h = δj + βjEj,tπt+h+1 + ψjEj,tπt+h−1 +
3∑

k=1

ξ̂k,tγj,k + αjEj,tut+h + ej,t. (12)

Note that we can only consider h = 1, 2, 3 (without h = 0) because we do not use Ej,tπt−1

in this study. As a corresponding adjustment, we select the respondents who made 90 or

more forecasts (for all h = 1, 2, 3) which is still at least 30 forecasts per h on average. By

this adjustment, the same 64 respondents are selected as in Section 3.2.

Table 9 presents the summary statistics of the parameter estimates for Model (12)

for each respondent. Comparing to the baseline model, we find that the percentage of

respondents for whom we find the scores are individually statistically significant is reduced,

as is the percentage of rejections for the three scores jointly. Nevertheless, we still find we

reject the joint insignificance of the scores for over a quarter of respondents in this more

highly parameterized model.

B Decompose Score 2 into positive and negative values

Given the recent interest in tail-end growth risks in the recent literature (see, e.g., Adrian

et al. (2019) and Adams et al. (2021)), we consider the possibility that forecaster behaviour
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Table 9: Summary of parameter estimates of Model (12)

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.511 0.767 0.073 0.273 0.734 25.0% 42.2% 54.7%
CPI forward 0.585 0.250 0.471 0.637 0.726 92.2% 96.9% 96.9%
CPI backward 0.206 0.122 0.146 0.220 0.272 90.6% 96.9% 96.9%
Score 1 -0.088 0.360 -0.160 -0.021 0.087 14.1% 21.9% 31.3%
Score 2 0.259 0.401 0.014 0.167 0.403 14.1% 18.8% 29.7%
Score 3 -0.042 0.407 -0.161 -0.017 0.097 1.6% 15.6% 17.2%
UNEMP -0.014 0.046 -0.035 -0.006 0.007 4.7% 23.4% 25.0%

F-test on Scores 1-3 18.8% 26.6% 31.3%
Adj. R2 64.9% 25.2% 50.8% 66.7% 85.6%
No. of Obs. 182.3 67.2 122.3 166.5 234.5
Note: The estimates are based on individual systems of 3 equations (i.e., one equation for
h = 1, 2, 3), for each respondent. For each parameter, we present the summary statistics of the
cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.),
median, and upper quartiles (u.q.). In the last three columns, we report the proportion of the 64
regressions for which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and
10% levels.

might be affected differently by upside and downside risk. In our setting, this means

allowing that forecasters might respond differently to positive versus negative skew in (last

period’s) cross-section of forecasts. To investigate this possibility, we decompose Score 2

as:

ξ̂
(+)
2,t = max

{
0, ξ̂2,t

}
,

ξ̂
(−)
2,t = min

{
0, ξ̂2,t

}
,

where ξ
(+)
2,t captures the positive skew and ξ

(−)
2,t measures the negative skew. Then we run

the following regression:

Ej,tπt+h = δj +ϕjEj,tπt+h+1+ ξ̂1,tγ1,k+ ξ̂
(+)
2,t γ

(+)
2,k + ξ̂

(−)
2,t γ

(−)
2,k + ξ̂3,tγ3,k+αjEj,tut+h+ej,t. (13)

Table 10 provides the summary statistics of the parameter estimates for Model (13)

across respondents. We find fewer rejections for either γ
(+)
2,k or γ

(−)
2,k , compared to the

baseline model, suggesting there is no evidence of a different response to positive and

negative values.
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Table 10: Summary of parameter estimates of Model (7)

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.751 0.744 0.284 0.748 1.135 43.8% 57.8% 68.8%
CPI 0.825 0.300 0.679 0.879 1.020 95.3% 96.9% 96.9%
Score 1 0.096 0.464 -0.225 0.164 0.364 28.1% 46.9% 54.7%
Score 2 - positive 0.427 0.771 -0.099 0.252 0.730 3.1% 6.3% 14.1%
Score 2 - negative 0.316 0.694 -0.017 0.238 0.616 0.0% 6.3% 9.4%
Score 3 -0.001 0.467 -0.212 0.022 0.211 4.7% 7.8% 10.9%
UNEMP -0.069 0.069 -0.099 -0.056 -0.015 93.8% 98.4% 100.0%

F-test on Scores 1-3 25.0% 37.5% 48.4%
Adj. R2 46.7% 25.0% 28.4% 46.6% 64.0%
No. of Obs. 243.5 89.6 162.8 223.0 312.8
Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3), for each respondent. For each parameter, we present the summary statistics of the
cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.),
median, and upper quartiles (u.q.). In the last three columns, we report the proportion of the 64
regressions for which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and
10% levels.

C Fixed effects of h

A simple way to check the assumption of the constancy of parameters over the forecast

horizon h, in the main text, is to check for the significance of horizon fixed effects, via:

Ej,tπt+h = δj + βjEj,tπt+h+1 +
3∑

k=1

ξ̂k,tγj,k + αjEj,tut+h + ηj,h + ej,t. (14)

where ηj,h contains the fixed effects h for respondent j.

Table 11 shows the summary of parameter estimates of Model (14) across respondents.

The results allowing for fixed effects are very similar to the results for the baseline model

without fixed effects. Moreover, the estimated coefficients on the horizon dummies are

significant for only 12-17% of the 64 respondents.

D Inclusion of an uncertainty measure capturing eco-

nomic conditions - VIX

We add the VIX as the additional aggressor in our baseline model and check whether our

results are still robust. We use the quarterly (end of quarter) VIX data downloaded from

Federal Reserve Economic Data (FRED). Note that VIX starts from 1990:Q1, and thus

our results with VIX is based on the period 1990:Q1 - 2022:Q2. Table 12 presents the

3



Table 11: Summary of parameter estimates of Model (14) across respondents

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.756 0.787 0.285 0.727 1.237 40.6% 64.1% 68.8%
CPI 0.826 0.303 0.683 0.888 1.024 95.3% 96.9% 96.9%
Score 1 0.081 0.467 -0.213 0.153 0.363 25.0% 46.9% 53.1%
Score 2 0.379 0.458 0.028 0.279 0.606 7.8% 21.9% 28.1%
Score 3 0.010 0.450 -0.182 0.000 0.286 3.1% 9.4% 14.1%
UNEMP -0.066 0.069 -0.098 -0.053 -0.017 34.4% 40.6% 40.6%
FE: h = 1 -0.017 0.216 -0.106 0.011 0.114 4.7% 14.1% 21.9%
FE: h = 2 -0.016 0.225 -0.093 0.004 0.133 4.7% 17.2% 23.4%
FE: h = 3 -0.009 0.228 -0.109 0.002 0.096 6.3% 12.5% 21.9%

F-test on scores 1-3 25.0% 43.8% 56.3%
Adj. R2 46.9% 24.8% 28.1% 46.6% 64.0%
No. of Obs. 243.5 89.6 162.8 223.0 312.8

Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3 of (14)), for each respondent j. For each parameter, we present the summary statistics of
the cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles
(l.q.), median, and upper quartiles (u.q.). In the last three columns, we report the proportion of
the 64 regressions for which we reject the null hypothesis of the parameter equal to zero at 1%,
5%, and 10% levels.

summary of parameter estimates across respondents of Model (7) with VIX included as the

additional regressor. The results with VIX is very similar to the baseline result, suggesting

the robustness of our results to the addition of VIX.

E Use the first difference of the unemployment rate

forecasts

We replace the level of the unemployment rate forecast with the first difference of the

unemployment rate forecast, as shown below

Ej,tπt+h = δj + βjEj,tπt+h+1 +
3∑

k=1

ξ̂k,tγj,k + αj∆Ej,tut+h + ej,t (15)

where ∆Ej,tut+h = Ej,tut+h − Ej,t−1ut+h−1.

The result is shown in Table 13. There is a marginal drop in the percentage of rejection

in the t-test of Score 1 and the F -test.
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Table 12: Summary of parameter estimates of Model (7) with VIX across respondents

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.817 0.839 0.304 0.864 1.319 45.8% 61.0% 67.8%
CPI 0.814 0.314 0.647 0.849 1.034 94.9% 96.6% 96.6%
VIX -0.004 0.012 -0.011 -0.003 0.002 11.9% 22.0% 28.8%
Score 1 0.096 0.476 -0.201 0.165 0.396 27.1% 45.8% 52.5%
Score 2 0.349 0.481 0.009 0.238 0.573 5.1% 16.9% 28.8%
Score 3 -0.037 0.508 -0.240 -0.013 0.177 3.4% 6.8% 10.2%
UNEMP -0.062 0.069 -0.098 -0.046 -0.009 32.2% 39.0% 47.5%

F-test on scores 1-3 22.0% 40.7% 59.3%
Adj. R2 44.8% 24.1% 28.5% 44.3% 59.9%
No. of Obs. 241.6 88.8 172.0 223.0 300.5

Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3), for each respondent j. For each parameter, we present the summary statistics of the
cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles (l.q.),
median, and upper quartiles (u.q.). In the last three columns, we report the proportion of the 64
regressions for which we reject the null hypothesis of the parameter equal to zero at 1%, 5%, and
10% levels.

Table 13: Summary of parameter estimates of Model (15) across respondents

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.334 0.605 -0.089 0.331 0.703 45.3% 60.9% 68.8%
CPI 0.833 0.298 0.695 0.884 1.016 95.3% 96.9% 98.4%
Score 1 -0.060 0.410 -0.206 0.024 0.170 23.4% 34.4% 39.1%
Score 2 0.390 0.465 0.044 0.314 0.550 12.5% 18.8% 29.7%
Score 3 0.011 0.470 -0.165 -0.011 0.278 3.1% 9.4% 12.5%
FD UNEMP -0.082 0.143 -0.169 -0.062 0.000 29.7% 45.3% 45.3%

F-test on scores 1-3 20.3% 35.9% 45.3%
Adj. R2 46.8% 24.7% 27.5% 46.8% 60.9%
No. of Obs. 241.6 89.6 161.5 220.5 304.8

Note: The estimates are based on individual systems of 4 equations (i.e., one equation for h =
0, 1, 2, 3), for each respondent j. FD UNEMP is the first difference of the unemployment rate
forecast. For each parameter, we present the summary statistics of the cross-sectional distribution
over j, including mean, standard deviation (s.d.), lower quartiles (l.q.), median, and upper quartiles
(u.q.). In the last three columns, we report the proportion of the 64 regressions for which we reject
the null hypothesis of the parameter equal to zero at 1%, 5%, and 10% levels.
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F Remove outliers at 5% level

When working with the LQD, it is necessary to remove outliers to prevent values of infinity

occurring (as when any s ∈ (0, 1) gives ft(Qt(s)) = 0). However, the choice of the level at

which to remove outliers is somewhat arbitrary. In this section we check that the results

are not overly sensitive to the choice made. In the baseline analysis, outliers at the 1% level

in each quarter t for a given h were removed. We repeat the analysis with outliers removed

at the 5% level. The summary of parameter estimates of the baseline model is presented

in Table 14. We find that the mean of the parameter estimates is similar to the base case.

The F -test rejection percentage (at 5% significance level) of 47% is very close to the base

case. The rejection percentage for the individual scores is slightly lower for Score 1 but a

little higher for Scores 2 and 3. We conclude that the findings are not overly sensitive to

the treatment of outliers.

Table 14: Summary of parameter estimates of Model (7) with outliers removed at 5% level

mean s.d. l.q. median u.q. rej. 1% rej. 5% rej. 10%

Intercept 0.735 0.750 0.325 0.785 1.066 48.4% 60.9% 75.0%
CPI 0.826 0.298 0.675 0.867 1.016 95.3% 98.4% 98.4%
Score 1 0.087 0.463 -0.228 0.164 0.358 28.1% 39.1% 50.0%
Score 2 0.472 0.532 0.083 0.348 0.679 17.2% 35.9% 39.1%
Score 3 0.078 0.487 -0.149 0.012 0.381 1.6% 10.9% 14.1%
UNEMP -0.066 0.066 -0.095 -0.052 -0.017 31.3% 39.1% 43.8%

F-test on Scores 1-3 35.9% 46.9% 57.8%
Adj. R2 47.0% 24.7% 28.9% 46.5% 63.6%
No. of Obs. 243.5 89.6 162.8 223.0 312.8
Note: The estimates are based on individual systems of 4 equations (i.e., one equation for
h = 0, 1, 2, 3), or each respondent. For each parameter, we present the summary statistics of
the cross-sectional distribution over j, including mean, standard deviation (s.d.), lower quartiles
(l.q.), median, and upper quartiles (u.q.). In the last three columns, we report the proportion of
the 64 regressions for which we reject the null hypothesis of the parameter equal to zero at 1%,
5%, and 10% levels. Outliers at the 5% level in each quarter t for a given h are removed.
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