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Abstract

In a DSGE rational expectations model, the nature of agents’ information sets is crucial

for both the dynamics of the solution and for whether an econometrician can infer structural

shocks and impulse responses from such a DGP. In an incomplete markets, heterogeneous

agent framework, we exploit results on single-agent signal extraction problems to show that,

with extreme heterogeneity, the aggregate solution to the individual agent’s informational

problem is a transformation of a representative agent’s problem with imperfect information

(II). When under II, agents cannot infer the shocks (‘non-A-invertibility’); a) the rational

expectations solution for the aggregate economy incorporates Blaschke factors and has a

higher state dimension than under perfect information (PI); b) in contrast, the ‘innovations

representation’ for an econometrician with the same II information set has the same state

dimension as under PI - hence the shocks are neither invertible nor recoverable which we

refer to as ‘hidden dynamics’; but c) a measure of ‘approximate invertibility’ can mitigate

the problem for some structural shocks.
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1 Introduction

How informative is a time series representation of a given vector of observables about the

structural shocks and impulse response functions in a DSGE model? The answer to this question

depends crucially on the information sets of agents in the economy.

We adopt a heterogeneous agent, incomplete markets framework where agents have incom-

plete and idiosyncratic information sets. Solving for a general rational expectations equilibrium

in this genre of models is far from straightforward. Techniques pioneered by Nimark (2008)

and others typically involve hierarchies of expectations (“beauty contests”), which in general

imply infinite-order state-space representations that can only be solved numerically, and, thus

of necessity, sacrifice the simplicity and insights of a representative agent economy. However,

in two limiting cases, things simplify considerably.

As idiosyncratic variation tends to zero, everyone is the same, so straightforwardly the

economy can be represented by the behaviour of a single agent. But the economy also simplifies

as idiosyncratic variation becomes extreme. In such cases, any aggregate signals from the

idiosyncratic economy are effectively swamped by idiosyncratic volatility resulting in what we

refer to as ‘hidden dynamics’. Then agents must rely on whatever purely aggregate signals are

available. In this paper, we exploit the properties of this limiting case. Crucially, however, we

show that the aggregate solution will be affected by the nature of optimal responses to strictly

idiosyncratic shocks under perfect information.

There are clear gains from this approach in terms of simplicity, tractability and insights on

how heterogeneity and imperfect information impact on aggregate dynamics. As always, with

any simplifying assumption, there are also losses in descriptive accuracy. But there is quite

a lot of evidence, which we discuss below, that strictly idiosyncratic variation is indeed much

greater than aggregate variation, so we argue that, for empirically relevant volatilities, outcomes

are likely to be closer to our case than to outcomes that can only arise under the (still very

common) assumption that heterogeneous agents are simply endowed with perfect information.

Exploiting this solution method allows us to address the question at the start of the paper:

how the general nature of the agents’ signal extraction problem under imperfect information

impacts on the econometrician’s problem of attempting to infer the nature of structural shocks

and associated impulse responses from the data. A key feature is that, if agents cannot directly

observe nor infer structural shocks and therefore make errors in their interpretation, this induces

additional hidden dynamics in the aggregate economy for the econometrician as well (‘non-E-

invertibility’) that would simply be absent under perfect information. We show this manifests

itself as Blaschke factors1 in the DGP.

To motivate our main general results, we first examine an illustrative example, before dis-

cussing how our analysis relates to the existing literature.

1As in Lippi and Reichlin (1994) - see sections 1.4 and A.3 in the Appendix.
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1.1 A Motivating Illustrative Example

We start by illustrating the key elements of our analysis with reference to the informational

implications of a simplified log-linearized version of a heterogeneous agent RBC economy with

idiosyncratic and aggregate uncertainties as in Krusell and Smith (1998). The model itself is

taken from Graham and Wright (2010), hereafter GW:2

ksi,t+1 = κ1k
s
i,t + κ2(at + εi,t) + (1− κ1 − κ2)ci,t (1)

Ei,tci,t+1 = ci,t + κ3Ei,tvt+1 (2)

at = ϕat−1 + εa,t where εa,t ∼ n.i.i.d(0, σ2a) (3)

vt = (1− α)(at − kt) (4)

Agents’ Information Sets : mA
t = vt ; mA

i,t = at + εi,t (5)

where ksi,t and ci,t are, respectively, the capital stock supplied by households and their consump-

tion on island i in period t. Note that ksi,t differs from capital stock rented by firms on island i

since capital is free to flow from less to more productive islands; at is aggregate technology; εi,t

is an idiosyncratic technology shock that aggregates to zero and vt is the rental rate on aggre-

gate capital, kt =
∫
µ(i)ki,tdi where µ(i) is the density of agent i. According to the principle of

market-consistent information (explained below), both the rental rate vt and the island-specific

wage wi,t are assumed to be observed by agents on the island. As shown in Appendix E.5, these

information assumptions are equivalent to (5). The linearization parameters, κ1, κ2 and κ3 are

given by

κ1 =
1

β
; κ2 =

(1− α)

αβ
(1− β(1− δ)); κ3 =

(1− β(1− δ))

σ

where β is the discount factor, δ is the depreciation rate, 1/σ is the inter-temporal elasticity of

substitution and α is the income share of capital.

The informational problem in this setting arises directly from heterogeneity in an incomplete

markets economy. Agents are assumed to have information sets that derive only from the

markets they trade in: thus they only observe the aggregate rental rate vt and their local

(island-specific) wage.3. In Appendix E.5, we show that this is equivalent to the information

assumption mA
i,t = at + εi,t in (5). Given this “market-consistent” information set, GW show

that the decentralized market equilibrium cannot replicate, and differs in important ways from,

the solution that would be achieved if all aggregate states were directly observable. Thus in this

framework, perfect information, as assumed originally by Krusell and Smith (1998) (and still

commonly assumed in much of the heterogeneous agent literature), is not market-consistent: it

can only arise if the information is essentially provided as endowment.

Note that, in this model, there is no ‘noise’. Nothing is measured with error: the island-

specific technology shock has real effects, which will always affect the optimal behaviour of agents

in the model. But the information itself may be noisy which is the source of the informational

2Appendix Section E.5 sets out the model as a special case of a standard RBC model with a fixed labour
supply. The model of Rondina and Walker (2021) is a restricted case with 100% depreciation of capital.

3GW show that almost identical results arise if agents observe a common risk-free rate.
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problem.

1.2 Extreme Heterogeneity as a Solution to a Single-Agent Problem

In the limiting case, as var (εi,t) approaches infinity, the idiosyncratic wage provides essentially

no information about aggregate technology, leaving agents with only the aggregate signal from

the return on capital as an input to their filtering problem for the aggregate economy. Rational

agents in such a heterogeneous economy will know that other agents face an identical problem;

as a result, all agents will share (and know that they share) a common estimate of aggregate

capital and aggregate technology. As a result, while the general solution analyzed by GW

involves an infinite order hierarchy of expectations, in this special case, the hierarchy collapses,

and hence the economy has a finite state-space representation.

Since all agents share a single common signal of the aggregate economy (the rental rate, vt),

this economy closely resembles, but is not the same as an economy with a notional representative

agent who only observes vt. While there has been a substantial literature that assumes imperfect

information in a representative agent model, building on the foundations developed by Pearlman

et al. (1986),4 any such model is subject to the critique that it cannot explain why information

is imperfect. The introduction of heterogeneity with idiosyncratic shocks provides a rationale.

But this limitation of the representative agent model with imperfect information does not

stop it being useful. If we solve the model for the limiting case of extreme heterogeneity, as above,

we show that, as a general result (Theorem 2), the solution for the aggregate economy turns

out to have the same form as for a parallel economy with a representative agent with a censored

imperfect information (henceforth II) set who only observes vt. But the aggregate dynamics of

this parallel economy are affected in important ways by the underlying heterogeneity.

Figure 1 illustrates the underlying mechanisms. It shows the responses to a positive tech-

nology shock in two cases of II: the first is the limiting case of extreme heterogeneity (which we

denote II-HA(∞)); the second is the solution for a notional representative agent with a censored

information set (which we denote II-RA). For comparison, it also shows responses in the case

where perfect information (henceforth PI) is simply assumed. The key differences stem from

the responses of aggregate consumption.

In the benchmark case in which heterogeneous agents are simply assumed to have PI (which

we denote PI-HA), the approximate aggregation result of Krusell and Smith (1998) becomes

exact, given the linearization, so the solution for the aggregate economy is identical to the

solution for a representative agent economy (which we denote PI-RA). Hence the productivity

shock causes the familiar response of a temporary rise in consumption, with a modest degree of

capital accumulation providing some element of consumption smoothing. While the aggregate

PI-HA solution is identical to the PI-RA solution, heterogeneous agents also have optimal

saddlepath responses to idiosyncratic states; but these responses all cancel out at the aggregate

level.

In stark contrast, in both the II-HA(∞) and II-RA cases, the positive productivity shock is

initially misinterpreted as bad news, reflecting the offsetting effects of technology and capital on

4Theorem 1 shows how a general linear RE model can be converted into a form used by Pearlman et al. (1986).
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Figure 1: Simple RBC Model. Impulse Responses to a Temporary Technology Shock for PI-RA,
II-RA and II-HA(Σ) as Σ → ∞ Compared. Parameter Values: r = 0.01, α = 0.333, δ = 0.025,
σ = 2

the return. In both cases, estimates of aggregate capital fall, triggering a fall in consumption.

But the responses are not identical. The key difference is that, in the II-HA(∞) case, agents

can observe their own capital. So bad news for aggregate capital must imply exactly offsetting

good news for aggregate estimates of the idiosyncratic components of capital and technology

(while idiosyncratic components must cancel in the aggregate, they do not cancel in aggregate

expectations). But the optimal responses to idiosyncratic states in the II-HA(∞) case are small.

Hence as Figure 1 shows, the consumption response is still negative. In contrast, in the II-RA

case, there is only bad news, so consumption falls more sharply.

But while the II-RA case overstates the negative response, our Theorem 2 shows that the

general II-HA(∞) case can be solved as if it were an II-RA case, and hence using the techniques

of Pearlman et al. (1986). The filtering problem for the aggregate economy that agents need to

solve takes an identical form to the II-RA case; but a key matrix that feeds into the problem

is shifted by the optimizing saddlepath responses to idiosyncratic states in the PI-HA case. So

heterogeneity does influence the dynamics of the aggregate economy, but in a way that can

be captured exactly in a parallel representative agent imperfect information economy, thereby

allowing the application of a well-developed toolkit for solving the informational problem. For

the illustrative example, Section 3.3 extends the analysis to the intermediate case with less

extreme degrees of heterogeneity.
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1.3 Implications for Applied Econometrics

Figure 1 also illustrates another crucial feature of the two imperfect information cases: the initial

errors in interpreting the productivity shock have prolonged impacts on capital accumulation,

and thus induce additional dynamics in response to a productivity shock that are absent under

perfect information.

For an econometrician observing this model economy, this ‘contamination’ of aggregate

dynamics by filtering errors has crucial implications. We show below that, in the special case

with no persistence in technology (ϕ = 0), and for empirically plausible values of σ,5 the reduced

form ARMA solution for the single aggregate observable can be written, for the two cases of

imperfect information, as well as for the benchmark case of perfect information, as

vt = −
(
1− ψsL

1− µL

) (
L− λs
1− λsL

)
︸ ︷︷ ︸

Blaschke Factor

α

λs
εa,t (6)

for s ∈ {II-HA(∞), II-RA,PI-RA} , with

λII−HA(∞) =
κ1

κ1 + κ2
> λII−RA = βλII−HA(∞) (7)

ψII−HA(∞) = µλII−HA(∞) > ψII−RA = β2ψII−HA(∞) (8)

λPI−RA = ψPI−RA =
1

µ
λII−HA(∞) > λII−HA(∞) (9)

where µ ∈ (0, 1) is the stable eigenvalue under perfect information.

All three cases have the common characteristic that the second ARMA factor in the solution

is a Blaschke factor, implying that the structural shock εa,t is non-fundamental in a time series

sense: i.e., it cannot be recovered from the history of the observable vt alone. As a result, all

three cases imply that the fundamental representation is an ARMA(1,1), each with a different

fundamental innovation.

Thus for the PI case, λPI = ψPI , so two of the terms cancel out. But plausible parameters

in this case imply that λPI = ψPI < 1, so that as the data tends to ∞, the relationship between

vt, the structural shock, εa,t, and the innovations process, ePI,t, is given by

vt = −(L− λPI)

(1− µL)

α

λPI
εa,t (non-fundamental)

= −
(
1− λPIL

1− µL

) (
L− λPI
1− λPIL

)
︸ ︷︷ ︸

Blaschke Factor

α

λPI
εa,t

=

(
1− λPIL

1− µL

)
ePI,t (fundamental)) (10)

where µ and λPI are the outcome of a standard estimation. The structural shock εa,t can

5See Appendices C.2–C.5. We also show below (in the Appendix Section E.7) that the properties given below
hold for values of σ greater than around one half, hence in line with the majority of empirical estimates. The
result generalizes easily to cases with ϕ > 0.

5



formally be calculated by applying a Blaschke factor to ePI,t, as in Lippi and Reichlin (1994),

using the parameter λPI .

For the two II cases s ∈ {HA(∞),RA}, we have

vt = −
(
1− ψsL

1− µL

) (
L− λs
1− λsL

)
︸ ︷︷ ︸

Blaschke Factor

α

λs
εa,t (non-fundamental) (11)

=

(
1− ψsL

1− µL

)
et (fundamental) (12)

Since ψs ̸= λs for these two II solutions, (11) is now an ARMA(2,2) process in the structural

shock εa,t. We can show (see Appendix C) that for plausible parameters −1 < ψs < 1 and −1 <

λs < 1 so (11) has one root (L = λs) less than unity and (11) is therefore non-fundamental in the

structural shock εa,t. But again theARMA(1,1) process (12) is fundamental in the innovation

et and can be estimated giving the parameter ψs. In this case the VAR econometrician will

have no inference about the value of λs, so this is an identifiability problem that is not an issue

for the DSGE econometrician.6

Note also that, for β close to unity, the implied differences between the two imperfect

information cases are relatively small, consistent with the responses shown in Figure 1.

We see then that the two cases of II also differ in a crucial way from the PI case, since the true

(non-fundamental) structural reduced form is in both cases an ARMA(2,2), whereas in the PI

case, since λPI = ψPI , it is an ARMA(1,1). Thus, the nature of the structural ARMA reduced

form captures the property noted above, that imperfect information changes the dynamics of

the macro-economy.7 But, crucially, the non-fundamentalness of the representation implies

that the history vt alone can provide the econometrician with no information either about

the structural shock nor about these additional dynamics. In the terms of Lippi and Reichlin

(1994), the structural ARMA representation is both non-fundamental and “non-basic” since it is

of higher order than the observable representation unless the MA parameter µ = ψs which they

correctly describe as a “fluke”. They go on to limit non-fundamental representations to be basic.

But in our framework, that focuses in the information sets of agents, non-basic (higher order)

representations arise endogenously from the agents’signal extraction problem under imperfect

information.

The features of the simple example illustrate the remainder of our general results.

Theorem 3 analyzes the general nature of the relationship between “A-invertibility” and “E-

invertibility”: whether, respectively, agents in the economy or an econometrician can observe,

or infer structural shocks and states from what they observe. There is a crucial link between

both properties and the “Poor Man’s Invertibility Condition” (PMIC) of Fernandez-Villaverde

6For the empirically less plausible case ψs > 1, in terms of the innovations process es,t, we can write vt as vt =(
L−ψs
1−µL

)
α
λs
es,t. Then to retrieve the structural shock, we would need to calculate εa,t =

(
1−λsL
L−λs

)(
L−ψs
1−ψsL

)
es,t

thereby requiring two Blaschke factors driving a even larger wedge between the VAR and DSGE econometrician.
7In Section 4.9 below, we consider the case where the econometrician may acquire a noisy signal of the true

structural shock - we show that, even in the limiting case where the shock is ultimately perfectly observed by the
econometrician, the Blaschke factors in (6) still imply that A-invertibility changes the dynamics of the system
compared to the benchmark case of perfect information.
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et al. (2007).

For a given set of observables, Theorem 3 shows first that E-invertibility is impossible without

A-invertibility - in itself perhaps an unsurprising result. But we also show that a necessary

condition for A-invertibility is that E-invertibility would hold if (hypothetically) agents were

simply endowed with PI.

In our example, for empirically plausible values of σ ≥ 1, the structural shock is non-

fundamental even under PI, hence this condition is not satisfied, and as a result, both A- and

E-invertibility fail at the first hurdle. However, for sufficiently low values of σ in our example,

the productivity shock would be fundamental and hence E-invertible under PI.8 But while E-

invertibility under PI is necessary, it is not sufficient for A-invertibility under general conditions

of II. Theorem 3 shows that applying a generalized version of the PMIC to the full state-space

representation of the economy under II (which, it may be recalled, must be of higher dimension

than under PI) implies additional conditions for A-invertibility. In the illustrative example,

these are violated, for any value of σ, so both A- and E-invertibility fail.

The remainder of our results draw out key general implications of imperfect information,

which can also be illustrated with reference to the example.

Theorem 4 shows that, in the absence of A- (and hence E-) invertibility, the solution for the

aggregate economy can never replicate PI, and must always incorporate Blaschke factors of the

same general form as in our example.

Theorem 5 then shows that, despite the higher dimension of the structural state-space repre-

sentation induced by imperfect information, there will always be a fundamental representation

(the “innovations representation” of Fernandez-Villaverde et al., 2007) of the same dimension as

under PI, with the remainder of the structural dynamics captured by Blaschke factors. In our

example, this implies the feature noted above that, in both cases of II, there is a fundamental

ARMA(1,1) representation, i.e, of the same order as the structural ARMA under PI, despite the

fact that, in both II cases, the true structural representations are ARMA(2,2). Crucially, how-

ever, the innovations in these fundamental representations are not equal to the true structural

shock.

Theorem 6 relates our results to the property of “recoverability”(see Chahrour and Jurado,

2022): it shows that recoverability will also fail when A-invertibility fails. To illustrate this

property in our example, we showed that, even under PI, for plausible values of σ, E-invertibility

would fail - hence the structural shock εa,t could not be recovered from the history vt. But

consider the position of an econometrician at some time T >> t. As T − t→ ∞, under PI, the

productivity shock at time t would in the limit be recoverable from the history vT , since while

the ARMA representation is not invertible working backwards in time, it is invertible working

forward in time, which is a requirement for recoverability.9 But, crucially, this will only be the

8Since ∂µ/∂σ > 0, for sufficiently low values of σ, λPI > 1, so the Blaschke factor disappears.
9Since from (6), the structural ARMA under PI implies

εa,t =
1

α

(
1− µL

1− λ−1
PIL

)
vt =

λPI
α

(
1− µL

1− λPIF

)
vt+1 (13)

where F = L−1 is the forward shift operator. Hence εa,t is a convergent sum of current and future values of vt.
See Appendix H for other illustrative examples of recovering shocks from future values of observables.
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case under PI, since for both cases, a convergent forward sum would require knowledge of the

Blaschke factor parameter λs ̸= ψs, which for II, in contrast to the PI case, again faces the same

identification problem highlighted earlier and cannot be estimated directly from the data.

These results imply a clear health warning to anyone using estimated fundamental time series

representations (which we refer to generically as VARs10) in an attempt to estimate structural

shocks and impulse response functions. To do so without reference to the informational structure

of the economy, and how this compares to the information set of the econometrician, may

lead to nontrivial errors of inference. If (as is commonly assumed) the econometrician has an

information set that is a weak subset of the agent’s (in general, imperfect) information set,

then fundamental innovations may be erroneously labelled as structural shocks, and impulse

responses may differ nontrivially from true structural impulse responses.

But this raises an obvious question: can we assess how different structural shocks will be

from observable innovations? The final Theorem 7 constructs a general measure of approximate

fundamentalness that applies to both perfect and imperfect information assumptions. In our

illustrative example, this comes down to the correlation between the true structural innovation

εa,t and the fundamental innovation es,t. It is straightforward to show that, as λs, the MA

parameter in the Blaschke polynomial becomes sufficiently close to unity, then corr (εa,t, es,t) also

tends to unity. On an empirically plausible calibration, λHA∞ is, on the one hand, sufficiently

close to unity that εa,t and es,t would be expected to be quite strongly positively correlated;

but on the other hand, sufficiently far from unity that impulse responses to true productivity

shocks are distinctly more complex and prolonged than under PI.

1.4 Contributions to Existing Literature

There are four strands of literature related to our paper.

The first strand is a largely econometrics literature on the invertibility/fundamentalness

problem which was first pointed out in the economics literature by Hansen and Sargent (1980).

Two seminal papers are Lippi and Reichlin (1994) that introduces Blaschke matrices and

Fernandez-Villaverde et al. (2007) that examines conditions for a solution of a rational ex-

pectations (henceforth RE) model to have a VAR representation. A comprehensive review is

provided by Alessi et al. (2011) and much of this material is now found its way into two excellent

macro-econometrics textbooks: Canova (2007) and Kilian and Lutkepohl (2017).

In the econometrics literature, a more recent approach bypasses the intervening step of a

SVAR and uses external or internal instruments which are variables correlated with a particular

shock of interest, but not with the other shocks. Instruments can then be used to directly

estimate causal effects by direct instrumental-variables regressions using the method of local

projections of Jorda (2005).

This invertibility/fundamentalness problem is often described in this first strand of literature

as one of “missing information” when the econometrician does not have all the information that

agents in the data generating process (henceforth DGP) have. This leads to a second literature

10The true reduced form will typically be a VARMA, or VAR(∞), and may sometimes be estimated directly by
state-space methods (e.g., Smets and Wouters, 2007) but will more commonly be a finite order approximation.
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that focuses on news shocks as an example of this extra information: see, for example, Leeper

et al. (2013), Blanchard et al. (2013) and Forni et al. (2017).11 In our paper, missing information

of this form is not at the heart of the problem, but rather it is imperfect information on the

part of both agents and the econometrician that takes centre stage; indeed the information sets

can be the same for both without removing non-fundamentalness.

A third literature on imperfect information in representative agent models was initiated by

Minford and Peel (1983) and generalized by Pearlman et al. (1986) - henceforth PCL - with

further contributions by Pearlman (1992), Woodford (2003), Collard and Dellas (2010) and

Baxter et al. (2011). A general theme of these papers is that II can act as an endogenous

persistence mechanism in the business cycle. Ellison and Pearlman (2011) incorporated II into

a statistical learning environment. Applications with estimation were made by Collard et al.

(2009), Neri and Ropele (2012) and Levine et al. (2012). Leeper et al. (2013), Blanchard et al.

(2013) mentioned above also study information issues in a representative agent framework.

Both these papers emphasize a main theme of our paper, namely, that macroeconomic variables

in the DSGE DGP process can only convey information available to agents in the model. It

follows that, if agents lack PI (non-A-invertibility in our terminology) and do not observe current

structural shocks, then the macroeconomic time series cannot contain the information to recover

the shocks in an estimated VAR.

A fourth literature is a class of heterogenous agent models that can be traced back to

Townsend (1983) which distinguish local (idiosyncratic) information and (aggregate) informa-

tion, e.g., Lucas (1975), Pearlman (1986), Pearlman and Sargent (2005), Nimark (2008), An-

geletos and La’O (2009), Graham and Wright (2010), Nimark (2014), Adams (2021), Ilut and

Saijo (2021), Okuda et al. (2021), Rondina and Walker (2021), Huo and Pedroni (2020), An-

geletos and Huo (2021) and Broer et al. (2021). Pearlman and Sargent (2005) use the method

of PCL to obtain a finite-space ‘single-agent’ RE solution that avoids higher-order beliefs which

is also a feature of the last four of these papers. All obtain model-specific solutions unlike the

contribution of this paper which is general for an important class of models.12 Angeletos and

Lian (2016) provide a recent comprehensive survey of what they refer to as the incomplete

information literature.13

We also draw on empirical evidence on the relative magnitude of idiosyncratic vs aggre-

gate shocks, as a rationale for our limiting case. For instance, Ilut and Saijo (2021), in a

general equilibrium heterogeneous firm framework, estimate the idiosyncratic component of the

11Recent surveys of these two strands of the literature and the relationship between VAR and DSGE models are
provided by Sims (2012) and Giacomini (2013). However, in common with the literature, these surveys explore
the issue without examining the main focus of our paper - the information assumptions of the agents in the
underlying structural model.

12Note also that these four papers mentioned deal with non-square systems where the number of shocks exceed
the number of observations so the RE solution is non-invertible. Until Section 5 our focus is on the square case
which may or may not be invertible.

13Here a comment on terminology is called for. Our use of perfect/imperfect Information (PI/II)is widely used
in the second strand of literature when describing agents’ information of the history of play driven by draws
by Nature from the distributions of exogenous shocks. The complete/incomplete framework of the Angeletos
and Lian (2016)’s survey (and other work by these authors) incorporates PI/II, but also refers to agent’s beliefs
regarding each other’s payoffs. In our framework this informational friction (leading to “Global Games”) is as
yet absent.
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standard deviation of a total factor productivity (TFP) shock to be 50-100 times that of the

aggregate component. Bloom et al. (2018) estimate, using macro- and industry-level data, the

standard deviation of common and idiosyncratic technology shocks, and find evidence of sub-

stantial idiosyncratic uncertainty in causing business cycles and large increase in variance that

characterises the crisis period.14

The final strand of literature proposes the concept of approximate invertibility (fundamen-

talness) for non-invertible (non-fundamental) RE linear solutions of DSGE models - see, for

example, Beaudry et al. (2016) and Forni et al. (2019). We provide a generalization of the re-

sults of these papers to a DGP where agents have II. Related to this concept, Miranda-Agrippino

and Ricco (2019) consider the case when a researcher only wants to partially identify the system,

that is, to retrieve the dynamic effects of one or a subset of the structural shocks.

In summary, our paper makes several important contributions, addressing both methodolog-

ical and substantive issues in model solution and in conducting applied time series and macroe-

conomics research related to DSGE models. Firstly, it provides a finite state-space solution to

an important general class of heterogeneous agent problems first studied by of Townsend (1983).

Secondly, it shows that, in this context, an a-theoretical VAR estimation of those variables may

not generate the impulse response functions to the structural shocks of interest because the RE

solution may incorporate Blaschke factors. Thirdly, it identifies and generalizes the conditions

for invertibility of the RE solution of a RA/HA/PI/II DSGE model. Fourthly, it constructs

the PI and II measures of approximate fundamentalness which can be used to assess the (non-)

invertibility/fundamentalness of structural shocks for further model validation. Thus, our pa-

per offers a unifying, general framework based on novel theoretical results to provide important

insights into studies of heterogeneity, informational imperfections and time series properties in

these models.

1.5 Structure of Paper

In Section 2, we first set out our baseline framework for a representative agent with II. Theorem

1 then shows that a general class of linear RE models can always be transformed into the form

that allows us to solve the informational problem using the techniques originally set out in PCL.

In Section 3, we then show, in Theorem 2, that we can derive a representation of the aggregate

economy with the same form from a limiting case of an incomplete markets, heterogeneous

agent economy.

Section 4 shows how the econometrician’s problem relates to the solution of the agents’

problems presented in Sections 2 and 3. Section 5 examines measures of approximate funda-

mentalness when A-invertibility fails.

14See also David et al. (2016) who estimate the posterior variance of a firm-specific TFP process. Other
important early contributions investigating the transmission of idiosyncratic uncertainty include Bloom (2009),
Arellano et al. (2012) and Christiano et al. (2014). Using a panel of Compustat firms, Arellano et al. (2012)
calibrate a model with credit frictions and heterogeneous firms, and show that exogenous increases in uninsurable
idiosyncratic volatility help generate substantial volatility in business cycles. Similarly, Christiano et al. (2014)
focus on the entrepreneurial idiosyncratic risk generating cross-sectional dispersion of firm-level productivity
with tighter credit conditions that could lead to a recession and accounts for a large share of the macroeconomic
fluctuations.
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Section 6 provides a quantitative analysis illustrating Theorems 3–7 using a richer RBC

model than the earlier analytical one. Section 7 provides concluding remarks.15 Online appen-

dices provide proofs of our key results as well as analysing a range of background issues.

2 The Representative Agent’s Problem

In this section, we first examine the general informational problem for the benchmark case of a

representative agent. We first show that a general class of linear rational expectations models

can always be transformed into the form utilized by PCL to generalize the solution of Blanchard

and Kahn (1980) under imperfect information (II-RA) rather than perfect information (PI-RA).

We then provide outline RE solutions in these two cases.

2.1 The Problem

We begin by writing a linearized RE model in the following general form

A0Yt+1,t +A1Yt = A2Yt−1 +Ψεt mE
t = LEYt mA

t = LAYt (14)

where matrix A0 may be singular, Yt is an n× 1 vector of macroeconomic variables; and εt is a

k×1 vector of Gaussian white noise structural shocks. We assume that the structural shocks are

normalized such that their covariance matrix is given by the identity matrix i.e., εt ∼ N(0, I).

We define Yt,s ≡ E
[
Yt|IAs

]
where IAt is information available at time t to the representative

agent, given by IAt = {mA
s : s ≤ t}. We assume that this contains the history of a strict subset

of the elements of Yt, hence information is in general imperfect; but we do not at this stage

seek to justify the restricted nature of the information set. Note that measurement errors can

be accounted for by including them in the vector εt.

2.2 Conversion to Generalized Blanchard-Kahn Form

The rest of this section is structured so that we first show how (14) can be transformed into

the state-space form utilized by PCL, a generalization of the Blanchard-Kahn form (Theorem

1), and then describe the RE saddle-path stable solution to the problem under PI and II.

Anderson (2008) lists a selection of methods that can be used to solve (14) for the case when

agents have PI. The most well-known of these are Klein (2000), Sims (2002) and Blanchard and

Kahn (1980) - henceforth BK. Lubik et al. (2020) adopt the Klein-Sims approach to a general

II environment with two kinds of agents with different information sets. However, we find that

the generalized version of the BK form that was utilized by PCL is particularly suitable for

comparing with the finite-space solutions of heterogeneous agent problems in Section 3.2. It is

also important in Theorem 4 for revealing the spectrum of the II solution as non-minimal and

incorporating a set of Blaschke factors.

15Our II solution for simulation and Bayesian estimation alongside the invertibility checks are currently available
in version 4.6.1 of Dynare. See Levine et al. (2020) and Appendix J for details.
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In order to move seamlessly from (14) to results that are based on PCL, we introduce our

first key result, which appears to be novel in the literature:

Theorem 1. For any information set, (14) can always be converted into the following general-

ized BK form, as used by PCL[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt

xt

]
+

[
H11 H12

H21 H22

][
zt,t

xt,t

]
+

[
B

0

]
εt+1 (15)

mA
t =

[
M1 M2

] [ zt

xt

]
+
[
M3 M4

] [ zt,t

xt,t

]
(16)

where zt, xt are vectors of backward and forward-looking variables, respectively.

Proof of Theorem 1. See Appendix B.1.

The expressions involving zt,t and xt,t arise from rewriting the model in PCL form (15). This

transformation (outlined in Appendix B.1) involves a novel iterative stage which replaces any

forward-looking expectations with the appropriate model-consistent updating equations. This

reduces the number of equations with forward-looking expectations, while increasing the number

of backward-looking equations one-for-one. But at the same time it introduces a dependence

of the additional backward-looking equations on both state estimates zt,t
(
≡ E[zt|IAt ]

)
and

estimates of forward-looking variables, xt,t. The presence of the latter is the key feature that

distinguishes our results on invertibility from those of Baxter et al. (2011) - henceforth BGW -

the applicability of which is restricted to cases where all forward-looking variables are directly

observable.

2.3 The Representative Agent Solution Under Perfect Information (PI-RA)

The PI solution is an important special case. Here we assume (without seeking to justify this

assumption) that the representative agent directly observes all elements of Yt, hence of (zt, xt).

Hence zt,t = zt, xt,t = xt, and using standard solution methods, there is a saddle path satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(17)

where ΛU is a matrix with unstable eigenvalues. The saddlepath matrix N can be calculated

by standard techniques. If the number of unstable eigenvalues of (G + H) is the same as the

dimension of xt, then the system will be determinate.16

After substituting for xt, the saddle-path stable RE solution for the states under PI is then

zt = Azt−1 +Bεt (18)

where

A ≡ G11 +H11 − (G12 +H12)N (19)
16Note that, in general, as Sims (2002) has pointed out, the dimension of xt will not match the number of

expectational variables in (14), as we see in the algorithm for the proof of Theorem 1 (see Appendix B.1).
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2.4 The Representative Agent Solution Under Imperfect Information (II-

RA)

Under II, the transformation of (14) into the form (15) and (16) in Theorem 1 allows us to

apply the solution techniques originally derived in PCL. We briefly outline this solution method

below.

We first define matrices G, in (15), and H, in (16), conformably with zt and xt, and define

two more structural matrices F , J

G ≡

[
G11 G12

G21 G22

]
H ≡

[
H11 H12

H21 H22

]
(20)

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (21)

where F and J capture intrinsic dynamics in the system, that are invariant to expectations

formation. Both PCL and BGW show that the filtering problem is unaffected by these additional

terms.17

Following PCL, we apply the Kalman filter updating given by[
zt,t

xt,t

]
=

[
zt,t−1

xt,t−1

]
+K

[
mA
t −

[
M1 M2

] [ zt,t−1

xt,t−1

]
−
[
M3 M4

] [ zt,t

xt,t

]]

The representative agent’s best estimate of (zt, xt) based on current information is a weighted

average of their best estimate using last period’s information and the new information mA
t .

Thus the best estimator of (zt, xt) at time t − 1 is updated by the “Kalman gain” K of the

error in the predicted value of the measurement. PCL show that K is solved endogenously as

K =

[
PAJ ′

−NPAJ ′

]
[(M1 −M2N)PAJ ′]−1, where PA is defined below in (28), but this version

of the Kalman gain is not directly incorporated into the solution for (zt, xt).

The solution under II, as derived by Pearlman et al. (1986) for the pre-determined and

non-predetermined variables zt and xt, can then be described by processes for the predictions

zt,t−1 and for the prediction errors z̃t ≡ zt − zt,t−1:

Predictions : zt+1,t = A (zt,t−1 +KJz̃t) (22)

Prediction Errors : z̃t = QAz̃t−1 +Bεt (23)

Non-predetermined : xt = −N (zt,t−1 +KJz̃t)−G−1
22 G21 (I −KJ) z̃t (24)

Measurement Equation : mA
t = E (zt,t−1 +KJz̃t) (25)

where

K =PAJ ′ (JPAJ ′)−1
; QA = F [I −KJ ] (26)

17By substituting from the second block of equations in (15), we can write zt = Fzt−1+

[
B
0

]
εt+1 plus

additional terms involving expectations formed at time t; and mA
t = Jzt+ additional terms likewise. Since all

expectational terms are known at time t, they do not affect the solution to the filtering problem.

13



F and J are as defined above in (21), K is an alternative Kalman gain matrix after stripping

out the predictable variation in the state variables zt+1 arising from dependence on xt. The

matrix A, defined in (19), is the autoregressive matrix of the states zt in the solution under PI.

We have introduced another non-structural matrix E defined by

E ≡M1 +M3 − (M2 +M4)N (27)

which captures the impact of predictions and prediction errors for zt on observable variables.

B captures the direct (but unobservable) impact of the structural shocks εt and P
A = E[z̃tz̃′t]

is the solution of a Riccati equation given by

PA = QAPAQA
′
+BB′ (28)

To ensure stability of the solution PA, we also need to satisfy the convergence condition,

that QA has all eigenvalues in the unit circle. Since the matrix QA is also the autoregressive

matrix of the prediction errors z̃t in (23), this is equivalent to requiring that prediction errors

are stable. Since there is a unique solution of the Riccati equation under mild conditions that

satisfies this condition, it follows that the solution (22)–(25) is also unique thereby extending

this property of the PI BK solution to the II case.

We can thus see that the solution procedure above is a generalization of the BK solution for

PI and that the determinacy of the system is independent of the information set.

We finally note that the II solution can be transformed into the PI solution when the agent’s

information set is (zt, xt). Choose just a subset of the information, mt = Jzt, such that JB is

invertible. We then deduce from (28) that PA = BB′ and hence z̃t = Bεt. Substituting into

(22) yields zt+1,t = Azt,t−1 + ABεt = A(zt,t−1 + z̃t) = Azt. Adding this to z̃t+1 = Bεt+1 yields

zt+1 = Azt +Bεt+1, the PI solution.

3 The Heterogeneous Agent (HA) Framework

We now move from a representative agent (RA) to a heterogeneous agent (HA) framework.

3.1 General Framework

We start with the following generalized version of a linearized HA model from the perspective

of agent i that encompasses all the papers discussed in the fourth strand of literature in Section

1.418

18Note that I1, I2 are general, not identity matrices. We have normalized the equation that includes forward
expectations so that, under PI-RA, the coefficient on expectations of xt+1 is the identity matrix. More generally,
one would include Ei,txt, but in the solution we would find that this is a linear function, via the saddlepath

relationship, of Ei,tzt, to reduce the amount of notation we therefore omit it. Also note that

[
R 0
A21 A22

]
corresponds to G11 in (15), and A33 to G22, along with other correspondences.
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ϖt+1

yi,t+1

WEi,txi,t+1

 =


R 0 0

A21 A22 A23

A31 A32 A33



ϖt

yi,t

xi,t



+


I 0

0 A21

0 A31


[
ϵt+1

ϵi,t

]
+


0 0 0 0

0 I1 0 I3

H I2 W − I I4




Ei,tzt+1

Ei,tzt
Ei,txt+1

Ei,txt

 (29)

where zt ≡ [ϖ′
ty

′
t]
′ are predetermined variables, ϖt shock processes, yt =

∫
µ(i)yidi aggregates

and µ(i) the agent i density. Measurements of agent i are given by

mA
t =M1zt +M2xt mA

i,t = ϖt + εi,t var(εi,t) = Σ (30)

where mA
t is a common information set, Ei,t are expectations over the diverse information

set Ii,t = {mA
k ,m

A
ik : k ≤ t}. xt are non-predetermined variables.

Putting Eit = Et and aggregating the RA special case can be written in the following

Blanchard-Kahn form of Theorem 119
ϖt+1

yt+1

Etxt+1

 =


R 0 0

A21 A22 A23

A31 A32 A33



ϖt

yt

xt



+


I

0

0

 ϵt+1 +


0 0

I1 I3

I2 I4


[

Etzt
Etxt

]
(31)

where matrices Aij are re-defined. The aggregate common information set of agents mA
t is as

in (30).

A critical if uncontroversial assumption is that current aggregate shocks affect observations

of aggregates with their input/output relationship being full rank. If not, then there is no

chance of VAR estimation being able to relate residuals to structural shocks.

To reduce notation, we also assume that the exogenous variables follow a VAR(1) process

with autoregressive matrix R.

We assume for convenience that expectations of future variables do not affect agents’ deci-

sions on yi,t; this can be justified within an optimizing framework because if an agent makes a

decision on a variable that depends on expectations of future values of aggregate variables, then

this would be coupled with expectations of that variable’s future value. So the variable would

be an element of the vector xi,t.

Note that, crucially, we make the assumption that agents observe their own actions perfectly,

so that Ei,t[Yi,t] = Yi,t; in that respect, the derivation of the state-space representation via

19Note in a HA framework we must put M3 =M4 = 0 in 16 in our choice of aggregate information set.
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Theorem 1 is more straightforward. However, account has to be taken of agent i’s best estimate

of current and future values of aggregate variables.

There are, however, some modifications, and in addition, some simplifications that we use

to ease the burden of notation in the proof of the main theorem of this section. Firstly, we make

the usual assumption for heterogeneous agents in this literature, that any aggregate shocks ϖt

are both perceived and acted upon with the addition of an idiosyncratic component εi,t; agent

i therefore only observes the composite ϖt + εi,t. But, crucially, as noted in the introduction,

εi,t is not simply ‘noise’: it also directly affects the agent’s state variable yi,t. In addition, we

make the usual assumption in this literature that εi,t is a vector white noise process.

While we write the system (31) in an unrestricted form, our results below will focus on a

limiting case where we allow var(εi,t) → ∞, so there is no useful information about zt provided

by mi,t. Then Ei,tzt+1 = Etzt+1. We denote this case by II-HA(∞) which is the focus of the

next section. On the basis of available evidence, cited in Section 1.4, we argue that this limiting

case is of empirical interest.

As in the representative agent case, we also exploit properties of the heterogeneous case

where all agents have perfect information (which we denote PI-HA) where this information is

simply assumed to exist as an endowment so agents (somehow) observe all current realizations

of the shock processes εt and εi,t. In this solution, the saddlepath matrix N for any individual

agent i will include optimal responses to purely idiosyncratic components, but, as in the example

analysed in the Introduction, it is straightforward to show that, given the linearity of the setting,

these responses cancel out in aggregate, so that the PI-HA solution for the aggregate economy

is identical to the PI- RA solution derived above. However, a key feature of our next result is

that the saddlepath responses to purely idiosyncratic responses in the PI-HA still play a key

role in determining the nature of the filtering problem when information is imperfect.

3.2 The Limiting Case of a Heterogeneous Agent Model

Before stating our main theorem, we introduce the following notation that resets matrices J

and E:

J =M1 −M2A
−1
33 A32 E =M1 −M2N (32)

Note that if M2 = 0, then E = J . Writing J = [J1 J2] conformably with zt so that Jzt =

J1ϖt + J2yt, we define S = J−1
1 J2.

Theorem 2. Assume a general HA framework as in (31) in which the idiosyncratic shocks

only enter the model as additions to aggregate shocks and that the resultant composite shocks

are observed. Then, as the diagonal elements and determinant of Σ, the idiosyncratic shock

covariance matrix, tend to infinity, the limiting aggregate solution, II-HA(∞) will have two

possibilities: (a) it is equivalent to the PI-RA solution if either of the following hold:

1. The PI-RA solution is E-invertible.

2. If the PI-RA solution is not E-invertible, but a PMIC condition for agent i is satisfied,

namely U2 ≡ (A21−A23Nεi)S−(A22−A23Nyi), where Nεi and Nyi are saddlepath responses
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to εi,t and yi,t under perfect information (the PI-HA ≡ PI-RA case), is a stable matrix.

Or (b) it will be different from PI-RA but still with a finite set of states. In particular, if all the

eigenvalues of U2 are unstable, then the solution has an identical structure to the representative

agent II-RA solution of (14), as in (22) to (25), but setting

F =

[
R 0

A21 −A23Nεi A22 −A23Nyi

]
(33)

Proof of Theorem 2. See Appendix B.2.

Thus we have shown that the aggregate solution in such an economy can be derived from

(but in important respects differs from) the informational problem of a notional representative

agent with the same aggregate information set, and will therefore, in contrast to intermediate

cases, have a finite state-space solution.

It is important to note that Theorem 2 does not say that the II-HA(∞) case is in general

identical to the II-RA case with the same aggregate observables. Instead it says that the

solution of the agents’ signalling extraction problem for the aggregate economy always takes

the same form as the solution of a notional II-RA problem, but, crucially, with amendments

to the underlying structure of this notional economy.The original definition of F in (21) for

the II-RA economy is entirely independent of the saddlepath matrix N; whereas (33) shows

that, in the notional II-RA problem solved in Theorem 2, it is shifted by saddlepath responses

to idiosyncratic shocks and states in the PI-HA case.20 Thus, the nature of the idiosyncratic

economy impacts both on the solution to the signal extraction problem but also, as a result, on

aggregate dynamics.

3.3 Extreme vs Intermediate Heterogeneity in the Illustrative Example

A key element in our analysis rests on the insights that we derive from the limiting case of ex-

treme heterogeneity, and the finite state-space representation that results. An obvious question

is how good an approximation this limiting case provides for less extreme degrees of hetero-

geneity. For the general case with multiple shocks, a solution is not yet available; but for the

illustrative example, at least, we show in Appendix D.1 that we can exploit a solution technique

that replicates that of Rondina and Walker (2021), which can be applied in the presence of a

single structural shock. For this case, we show the impact of intermediate heterogeneous cases

comparing them with the two limiting cases of homogeneity (and hence perfect information)

and extreme heterogeneity.21 This gives the following solution for the observable rental rate vt

20Although the general PI-HA solution has not been specified, the proof of this theorem in Appendix B shows
that Nεi and Nyi are unrelated to the filtering problem, and thus must be identical to the solution in the PI-HA
case. The additional HA saddlepath is precisely analogous to that in Rondina and Walker (2021) – see their
condition (A.20)

21For the same calibration, these results are very similar to those derived in GW using a numerical solution
method derived from Nimark (2008) for the truncation of the infinite state-space implied by an infinite hierarchy
of expectations. GW also show similar results for the case where both aggregate and idiosyncratic technology
are persistent.
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Figure 2: Simple RBC Model. Impulse Responses to a Temporary Technology Shock for PI-RA,

II-RA and II-HA(Σ) where Σ ≡ var(εi,t)
var(at) . Parameter Values: r = 0.01, α = 0.333, δ = 0.025,

σ = 2

(the counterpart to (8) for the limiting case)

II-HA(Σ) : vt =
(1− α)

(
1− µ1µL

κ1

)
(1− µ1L)

(
1− 1

λL
)

(1− λL)︸ ︷︷ ︸
Blaschke Factor

at (34)

where µ ≡ λ2(κ1+κ2)
κ1

and λ ∈ (0.1) is a solution22 of

Σ

(
λ− κ1

κ1 + κ2

)(
1

β
− λ

)
=

(
λµ1 −

1

β

)(
λ− κ1

(κ1 + κ2)µ1

)
(35)

and Σ ≡ var(εi,t)
var(at) . In the limiting case, as Σ → ∞, µ = λ = κ1

κ1+κ2
and (34) becomes (7).

Figure 2 illustrates the results. It shows the responses of aggregate consumption and other

key aggregates to an iid aggregate technology shock for a wide range of values of the ratio

Σ = var (εi,t) /var (εa,t). For a quite wide range of empirically relevant values, the limiting case

matches intermediate cases quite well, and via the same mechanism: the technology shock is

interpreted as bad (or at least less good) news on the capital stock. Even when Σ = 1 (which

would be very much at the low end of the empirically plausible range), the response of consump-

tion to a technology shock is nontrivially damped, compared to the perfect information solution.

Thus, while the limiting case is clearly restrictive, it also points clearly to the equally restrictive

22It is straightforward to show that such a solution always exists.
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nature of solutions that simply rely on the assumption of perfect information, provided as an

endowment.

4 The Econometrician’s Problem

We now show how the econometrician’s problem relates to the solution of the agents’ problem

presented in Section 2 and hence (from Theorem 2) the limiting case of Section 3.

4.1 Informational Assumptions

In our central case, we assume that, under imperfect information, the econometrician always has

the same information set for the aggregate economy as the aggregate information set available

to the agents under II, thus mE
t = mA

t . Having derived three key results below (Theorems

3–4) under this assumption, in Corollary 5.2 of Section 4.7, we consider the implications of the

econometrician’s information set being a strict subset of that of the agents.23 In Section 4.8, we

then consider the case that, at least over the course of time, the econometrician has, at some

T , more information than agents at time t << T .

4.2 A-invertibility: When II Replicates PI

It is evident that, for the general case, in both II-RA and II-HA(∞) cases, imperfect information

introduces non-trivial additional dynamics into the responses to structural shocks - a contrast

which is crucial to much of our later analysis. However, there is a special case of the general

problem under II, which asymptotically replicates perfect information, and hence where PA =

BB′.

Definition 1. A-invertibility: An information set is A-invertible if agents can infer the true

values of the structural shocks εt (and hence, in the II-HA case, εi,t) from the history of their

observables, or equivalently, PA = BB′ is a stable fixed point of the agents’ Ricatti equation,

(28). Hence QA must be a stable matrix evaluated at this fixed point.

4.3 E-invertibility: The ABCD (and E) of VARs

Corresponding to A-invertibility we now define the corresponding concept from the viewpoint

of the econometrician:

Definition 2. E-invertibility: An aggregate information set is E-invertible if an econometri-

cian can infer the true values of the shocks εt from the history of the econometrician’s observ-

ables,
{
mE
s : s ≤ t

}
.

To see how the two concepts of A- and E-invertibility relate to each other, consider an

econometrician’s state-space representations of the aggregate economy of the type that arise

23This includes the popular example non-invertibility arising from a “missing information problem” where
agents but not the econometrician observe “news shocks”.
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naturally from our solution method in Section 2, of the general form

st = Ãst−1 + B̃εt mE
t = Ẽst (36)

where the tildes over each of the matrices distinguish this state-space representation from the

particular form (without tildes) under perfect information. It is straightforward to show that

both the PI-RA and II-RA (and hence, from Theorem 2, II-HA(∞)) representations of the

previous two sections are in the ABE form of (36).

For the PI-RA case, given the informational assumptions set out above, we have, straight-

forwardly, st = zt, Ã = A, B̃ = B, Ẽ = E. As noted above, given our linearity assumption, this

is also the solution for the aggregate economy in the PI-HA case.

For the II-RA case, we have

st =

[
zt,t−1

z̃t

]
(37)

Ã ≡

[
A AKJ
0 QA

]
(38)

B̃ ≡

[
0

B

]
(39)

Ẽ ≡
[
E EKJ

]
(40)

where A, K, J, QA and E are as defined after (22) to (25).

Given Theorem 2, there is also an equivalent representation of the aggregate economy in the

II-HA(∞) case.

This “ABE” representation form is the form usually found in the statistics literature. In con-

trast, the following “ABCD” form is often but not exclusively used in the economics literature,

e.g., Fernandez-Villaverde et al. (2007)

st = Ãst−1 + B̃εt mE
t = C̃st−1 + D̃εt (41)

It is straightforward to show that any ABE form implies an ABCD form, with C̃ = ẼÃ and

D̃ = ẼB̃. Appendix A.1 shows that (less obviously) the reverse also applies; it also shows that

all of the state-space models that are used in the statistics, control theory and econometrics

literature can be rewritten in terms of one another.

The condition for the system (36) to be E-invertible, which we exploit below in Theorem 3,

is then a generalization of the PMIC of Fernandez-Villaverde et al. (2007),24 which is obtained

by some algebraic manipulation of (36):

Lemma 1. PMIC: For a general “ABE” system of the form in (36), necessary and sufficient

conditions for E-invertibility are: (a) A ‘square system’ with m = k; (b) ẼB̃ (now a square

matrix) is non-singular; (c) Ã(I − B̃(ẼB̃)−1Ẽ) has stable eigenvalues.

24This result appears to date back at least to the work of Brockett and Mesarovic (1965).
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Proof. See Appendix A.2.25

A final observation is that invertibility does not require the ABE representation to be in

minimal (i.e., controllable and observable) form; we mention this since the ABE representation

of the II solution below might not be minimal.26

The advantages of using the ABE state-space form in what follows are (i) the Riccati equa-

tion is simpler than for any of the other formulations, (ii) the solution under II is much simpler

to express and, most usefully, (iii) the representation of the model using the innovations process

(see Appendix A.5) has the same structure as the original model.

4.4 E-invertibility: When Agents Have PI

The conditions for E-invertibility under PI-RA are straightforward, and merely mimic the PMIC

requirements of the previous section, but with Ã = A, B̃ = B, Ẽ = E, st = zt. Hence we

immediately have:

Lemma 2. If agents have PI, the conditions for E-invertibility (as in Definition 2) are: the

square matrix EB is of full rank and A(I −B(EB)−1E) is a stable matrix.

It is straightforward to show that this is identical to the original PMIC, derived from the

ABCD representation, in Fernandez-Villaverde et al. (2007). Since, as noted above, the aggre-

gate solution under perfect information (provided as an endowment) in a heterogeneous agent

economy (PI-HA) is the same as in a standard representative agent economy (PI-RA), the same

condition implies in both PI cases.

4.5 E-invertibility: When Agents Have II

We now consider the more general case of E-invertibility under II (which, from Theorem 2,

subsumes both II-RA and II-HA(∞) cases). The result is straightforward, but powerful:

Theorem 3. Assume that the number of observables equals the number of shocks (m = k) .

Assume further that the PMIC conditions in Lemma 2 hold (so the system would be E-invertible

under PI) but agents do not have PI. Then E-invertibility under II holds if and only if A-

invertibility holds, and this requires that the square matrix JB is of full rank, and QA = F (I −
B(JB)−1J) is a stable matrix.

Proof. See Appendix B.3.

The following corollary immediately follows.

25A slightly weaker condition than invertibility is fundamentalness which allows some eigenvalues to be on the
unit circle. However, we use the two terms interchangeably and, in fact, if we restrict our models to have only
stationary variables, then the two concepts are equivalent.

26To show this, suppose that (Ã, B̃) is not controllable; then there exists an eigenvalue-eigenvector pair (λ, x)
such that x′Ã = λx′, x′B̃ = 0. It is then trivial to show that x′Ã(I − B̃(ẼB̃)−1Ẽ) = λx′. But we have
assumed that Ã is a stable matrix, so an uncontrollable mode cannot be the source of non-invertibility. The same
conclusion can be drawn for non-observability, for which there exists an eigenvalue-eigenvector pair (µ, y) such
that Ãy = µy, Ẽy = 0.
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Corollary 3.1. For the II-HA(∞) case, after making the substitutions for J and F from The-

orem 2, the latter condition reduces to the condition that A22 −A23Nyi − (A21 −A23Nεi)S is a

stable matrix.

While there is a clear mathematical parallel between the condition for PI+E-invertibility in

Lemma 2 and Theorem 3, the crucial difference is that, for the general II case, the condition for

E-invertibility under PI is a necessary, but not sufficient condition for E-invertibility. Theorem

3 exploits the generalized PMIC of Lemma 1 set out above, which always implies additional

conditions.

There is also a subtle, but insightful, difference between the two cases of imperfect infor-

mation. In the II-RA case, by inspection of the condition for A-invertibility, this condition is

different from, and can hold independent of, E-invertibility, even when the econometrician has

the same information set. Thus, at least in principle, in the II-RA case, A-invertibility could

hold (thus replicating PI), but E-invertibility might fail, even if it would hold under PI.

In contrast, we have the following important corollary of Theorems 2 and 3:

Corollary 3.2. Under II-HA(∞), A-invertibility (and hence E-invertibility) can only hold if

E-invertibility would hold under PI (i.e., the conditions in Lemma 2 must hold).

Since we have argued that II-HA(∞) is more defensible in terms of informational assump-

tions, this distinction between the two II cases is important: it is a further respect in which the

nature of the saddlepath solution under PI is crucial even under conditions of II.

The basis for this contrast is that the informational problem for agents in the II-HA(∞) case

is more complex than in the II-RA case. In the II-RA case, the saddlepath problem and the

informational problem are independent. So in the II-RA case, A-invertibility is independent of

the saddlepath solution (from (21), J and F, and hence, from (26), QA, are all independent of

N); but E-invertibility is not (from (27), E depends on N). In contrast, in the II-HA(∞) case,

any given agent can only solve their own informational problem on the assumption that all other

agents in the economy are simultaneously doing so, which means that the saddlepath solution

also affects each agent’s informational problem. Thus, the aggregate saddlepath solution matters

for A-invertibility, just as it does for E-invertibility under PI (hence, from Theorem 2, in the

II-HA(∞) solution, J is replaced with E). Furthermore, Theorem 2 shows that the saddlepath

response to strictly idiosyncratic shocks feeds into the amended version of F , and hence also

feeds into QA, and hence, the condition for A-invertibility.

In Section 6 below in a richer numerically solved RBC model, we illustrate Theorem 3 with

examples of information sets that satisfy the PMIC conditions in Lemma 2 but do or do not

satisfy the extra conditions in Theorem 3.

4.6 If A-invertibility Fails

The conditions for A- (and hence E-) invertibility to be satisfied are stringent. The following

result forms the basis for our remaining analysis of cases where these conditions are not satisfied.
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Theorem 4. Under the assumptions of Theorem 3, if A- (and hence E-) invertibility fail, then

the solution for aggregate variables can never be identical to the PI case, and will incorporate

Blaschke factors in the impulse response functions.

Proof. See Appendix B.6.

The first element of this theorem is unsurprising: if agents cannot correctly identify the true

structural shocks then their responses are bound to differ from those under PI. But the key

feature that the aggregate solution that results from these responses must incorporate Blaschke

factors is crucial for what follows.

Note also that, given the equivalence of II-RA and II-HA(∞) representations established in

Theorem 2, this result, applies in both cases, as do the later results that follow from it.

4.7 The Innovations Process for II When A-invertibility Fails

In the absence of A- and hence E-invertibility, there is still an “innovations representation” (see

Fernandez-Villaverde et al., 2007) under mild conditions.27 The counterpart to the innovations

representation is, in population, a finite order fundamental28 VARMA (or VAR(∞)) in the

observables, mE
t , with innovations et. This can either be directly estimated via its state-space

representation (using Dynare, for example), or, more commonly, it may be approximated by

a finite-order VAR(p) approximation. When the conditions stated in Theorem 3 do not hold,

the VARMA or VAR approximation will generate a series of reduced-form residuals that are

a linear transformation of innovations et ≡ mE
t − Et−1m

E
t in (A.17) but not of the structural

shocks εt.

We now examine the properties of the innovations representation as in (A.17) under general

conditions when a failure of A-invertibility leads to a failure of E-invertibility.

Theorem 5. Consider the case where there is a failure of A-invertibility under II, and hence

(from Theorem 3) of E-invertibility. The innovations representation of the RE saddle-path

solution is of the same dimension as under PI and is given by

ξt+1 = Aξt + ZE′(EZE′−1et+1 mE
t = Eξt et ∼ N(0, EZE′) (42)

where ξt is a vector process of precisely half the dimension of the state-space process that gen-

erates the impulse response functions (henceforth IRFs) of the structural shocks of the form

(22)–(25), and

Z = AZA′ −AZE′(EZE′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (43)

Proof. See Appendix B.7.

Notably, this result tells us that, even though the dynamics of the RE saddle-path solution

under II are considerably more complex and add more inertia than under PI (and hence have

27See Appendix A.5 for standard results for the innovations representation and Lemma 5 in particular.
28We deliberately use the term fundamental here, rather than invertible, to reflect the fact that estimated

VARs may contain stationary transformations of unit root processes.
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a state-space representation of twice the dimension), the innovations process et is generated by

equations that are of the same dimension as under PI.29

The implication of this result is of major significance for empirical work:

Corollary 5.1. Since the spectrum of (42) must be identical to that of (22)–(25), it follows that

in the absence of A-invertibility, the latter is a non-minimal spectral factorization. It therefore

incorporates a set of Blaschke factors whose presence cannot be detected by an estimated a-

theoretical representation. Hence the statistical properties of data as generated by the model

under II and represented by a fundamental VARMA or VAR approximation cannot, in general,

generate the true IRFs.

In empirical work, a common approach (in the tradition of, for example, Christiano et al.,

2005) is to compare impulse responses by applying a structural identification scheme to the

estimated VAR(p) with the impulse responses implied by their structural DSGE model. In

contrast, Kehoe (2006) advocates the approach of Sims (1989) and Cogley and Nason (1995)

which compares impulse responses of a finite order, finite sample structural VAR estimated on

the data with a VAR with the same structure, run on artificially generated data from the model.

However, for both approaches in the absence of A-invertibility (and therefore E-invertibility),

the reduced-form residuals in the data VAR are not a linear transformation of the structural

shocks εt (even with correct choices of identification matrix), but are instead a finite-order, finite-

sample estimate of the innovations, et. Then the innovations et are not a linear transformation

of εt and it follows that comparisons of IRFs may be seriously misleading.

Up to now we have deliberately avoided the “missing information” problem highlighted in

the original fundamentalness literature by assuming that the econometrician and the agents

have the same II set. Now consider the following corollary where agents have more information

about the variables of the model (such as news shocks), although this does not imply that agents

have PI.

Corollary 5.2. If the econometrician’s information set is a subset of that of the agents and the

system is not A-invertible, then the innovations process as estimated by the econometrician will

again be of the same dimension as under PI, and thus will be of lower dimension than the true

system in (22)–(25).

The implication therefore is that, with any failure of A-invertibility, then provided the econo-

metrician is no better informed than the agents, one should be wary of using an unrestricted

VAR to generate the IRFs of the structural shocks.

4.8 Are the Structural Shocks Recoverable When E-invertibility Fails?

As we have seen, in the absence of A-invertibility, the best the econometrician can do, given the

history of the observations, is to estimate the innovations representation (see below) of the true

model. However, a recent literature, initiated by Chahrour and Jurado (2022), has raised the

29This result is a generalization of BGW, Corollary 1, p302, but without relying on their assumption that all
forward-looking variables are observable.
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possibility that non-invertible structural shocks may be recoverable, in a finite sample of length

T, from the full sample history
{
mE
i : i = 1, ..., T

}
for t ∈ (τ, T − τ) for τ sufficiently large.

Analogously to invertibility, recoverability is an asymptotic concept: the shock εt is recoverable

if it can be written as a convergent sum of both past and future observables, in which case the

impact of both initial and terminal conditions on any observation in the interior of the sample

becomes vanishingly small as T → ∞.

In Lemma 3 in Appendix A.4, we show that the innovations process for a non-invertible

VARMA model is represented by one of the minimal spectral factorizations of the spectrum of

the observables. All other spectral factorizations can then be generated via other symmetric

solutions of the associated Riccati matrix, and one of these will be equivalent to the original

VARMAmodel to within a simple linear transformation provided that the latter is also a minimal

spectral factorization. However, we have shown that, when A-invertibilty fails for our II setup,

the true DGP implies a non-minimal spectral factorization30 due to the presence of Blaschke

factors that map the true structural shocks, εt, to et, the innovations to the observables. Thus

we have the following further result:

Theorem 6. If the model has the BK-type representation of (15) and (16), with xt of non-zero

dimension (i.e., has saddlepath dynamics), and is not A-invertible, then the true DGP is a

non-minimal spectral factorization of the spectrum of the agents’ information set. Hence the

parameters required to render the structural shocks recoverable cannot be identified from an

a-theoretical time series representation of the observables (or VAR approximation thereof)

Proof. The result follows immediately from the previous paragraph and Appendix A.4.

The VAR assumes a minimal spectral factorization of the data, and this is why it cannot be a

true representation of the model even after applying the Forni et al. (2017) transformation. Thus

in the absence of A-invertibility, and where there are saddle-path dynamics, when converting

the innovations process representation of the former into any non-invertible representation, such

alternative representations will always retain the dimension of the innovations process. Since the

latter, as we have seen, is of dimension lower than that of the state-space describing the effect

of individual shocks under II, it follows that the two representations can never be equivalent.

Hence the non-A-invertible structural shocks are not recoverable from any stochastically minimal

representation, whether fundamental or non-fundamental.31 Thus recoverability cannot, in

general, provide an alternative means of using VARs for deriving IRFs of structural shocks

under II in the absence of E-invertibility.32

30Or equivalently, in Lippi and Reichlin (1994)’s terminology, the implied non-fundamental VARMA represen-
tation is also non-basic (i.e., is of higher order).

31Note that Forni et al. (2017) have an example where recoverability does hold but their very simple model
(See Appendix I) incorporates recursive expectations that automatically render the system backward-looking,
and therefore is not of the BK-type referred to in Theorem 5.

32Exceptions to this general result arise only in tightly restricted cases. Thus we showed in the discussion of
our illustrative example that in the special case that agents are endowed with perfect information, the structural
shock is recoverable even when E-invertibility fails. But this arises only as a result of the combination of perfect
information, a single structural shock, and a resulting non-fundamental ARMA representation of the observable
that is, in Lippi and Reichlin (1994)’s terms, “basic”: i.e., of the same order as the fundamental representation
- hence the econometrician simply has to flip the single MA root, and solve backwards. It might appear that
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Does this mean that recoverability has no applicability at all to such models? On the con-

trary, Theorem 5 and Corollary 5.1 showed that the true model has a non-minimal stochastic

representation, incorporating a set of Blaschke factors. From an a-theoretical perspective, while

any such factors may exist in principle, they can be of arbitrary form. In the context of a struc-

tural model with II, these Blaschke factors are not arbitrary, since they can be related back to

the underlying structure of the model. However in the non-basic higher order non-fundamental

representation, their estimation is subject to the identification problem (highlighted in the il-

lustrative example) of parameters that generate Blaschke factors, so the VAR (a-theoretical)

econometrician is unable to recover structural shocks even using data from −∞ to +∞.

4.9 Can the Econometrician Bypass Non-invertibility?

Our central results have been derived under the assumption that, at time t, the econometrician

either has the same information set as the agent or a strict subset thereof. Both assumptions

are commonly made in the literature. However, it is worth considering the possibility that, at

least after the passage of time, the econometrician may in some cases have a bigger t-dated

information set. The illustrative example of Section 1.1 is a potential case in point. It is

straightforward to show that the agents’ information problem arises because they do not have

any information on the aggregate wage or aggregate output: if they did, the system would be

A-invertible.33 Yet, at least over the passage of time, econometricians will acquire estimates

of aggregate output and wages at time t, albeit possibly measured with error. While this

takes us outside the framework of our key results, it is straightforward to show that failures of

A-invertibility still have important implications for time series properties.

In the light of our results, we now return to the econometrics literature briefly reviewed in

Section 1.4 that bypasses the intervening step of a SVAR using external or internal instruments

and the method of local projections of Jorda (2005). This method does not require invertibility.

Plagborg-Moller and Wolf (2021), building on Stock and Watson (2018), show that the

addition of an instrumental variable whether external or internal, to the econometrician’s in-

formation set may enable estimation of at least a scaling of the true IRF even when structural

shocks are non-invertible. Their Corollary 1 shows that this is equivalent to a Cholesky ordering

of the VAR provided that the instrumental variable is the first variable of the VAR.

To focus our analysis, we take a very simple example of a reduced form observation vector

mt whose impulse response is given by a Blaschke factor that multiplies the structural shock

εt. We then assume that the instrumental variable, xt, is a noisy observation of the structural

this result would generalize to any solution that generates a basic non-fundamental representation (for which
perfect information for agents is a necessary, but not sufficient condition). However, this is not the case, since
with multiple MA roots the econometrician will not know a priori which roots to flip.

33See BGW Section 6, which shows that, if the wage or output is observable, the rental rate of capital becomes
informationally redundant.
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shock,34 so the system is given by

xt = svt + εt mt =
b− L

1− bL
εt var(εt) = var(vt) = 1 (44)

where vt is iid and independent of εt at all leads and lags. Our illustrative example again

provides motivation: mt can be interpreted as a scaling of the observable fundamental innova-

tion
(
1−γ−1L
1−γL

)
αεa,t ≡

(
1−µL
1−ψL

)
vt in Equation (6), the time series representation of the single

observable, vt, the rental rate on capital. In population, at least, observing the history of mt

is equivalent to observing the history of vt. Conditional upon this information set alone, mt is

clearly white noise. However, an estimated truncated VAR(∞) in xt and mt with xt ordered

first in a Cholesky decomposition will yield the following innovations representation for mt

mt =
b− L

1− bL

1√
1 + s2

e1t +
s√

1 + s2
e2t (45)

where e1t, e2t are orthogonal white noise processes with unit variance.35 Since e1t is simply a

scaling of xt, by substitution this can be rewritten as

mt =
b− L

1− bL

1

1 + s2
xt +

s√
1 + s2

e2t =
b− L

1− bL

1

1 + s2
(svt + εt) +

s√
1 + s2

e2t (46)

where
√
1 + s2e1t is the prediction error for xt (given by xt − Et−1xt) and be1t+se2t√

1+s2
is the

prediction error formt. Thus, as pointed out by Plagborg-Moller and Wolf (2021), the structural

VAR produces a scaling of the true impulse response to the shock, with attentuation bias driven

by s. This is another no free lunch result as in Stock and Watson (2018). Indeed, by inspection

of (46), only in the limit as s goes to zero is the IRF correctly estimated, and the system

becomes invertible, and, by substitution back into the fundamental representation, the IRF for

the underlying observable vt can also be derived.

But even in the extreme limiting case of s = 0, in which the econometrician’s superior

information set allows them to bypass non-invertibility entirely, a key feature of our results is

still central: the nature of this IRF is driven by the failure of A-invertibility. As noted in our

earlier discussion, while under the assumption of perfect information, vt is a (non-fundamental)

ARMA(1,1), the failure of A-invertibility, and the resulting Blaschke factor, means that the

true DGP for vt is a non-fundamental (and, in Lippi and Reichlin (1994)’s terms, “non-basic”)

ARMA(2,2). So even in this most favourable case, the agent’s informational problem funda-

mentally changes the time series properties of the economy.36

This example has allowed the econometrician to at least mitigate the non-invertibility prob-

lem by adding more information, in this case, xt. This is also the approach of factor-augmented

34This is effectively Plagborg-Moller and Wolf (2021)’s Assumption 4, which requires that the observable error
from a linear projection of the instrumental variable on lagged observables is equal to the structural shock plus
iid noise.

35For derivation, see Appendix A.3.
36It must be an open question how the econometrician would interpret this IRF in this case. If estimation is

predicated on the assumption of perfect information, then the additional dynamics would not be easy to interpret
in a structural framework.
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VAR models which extract common factors from large cross section of time series data.37 How-

ever, in the context of our paper, this then begs the question why agents are not able to observe

the additional information provided by (44) as well. What are the consequences of agents having

this additional source of information?

Trivially, if agents can observe the same information as the econometrician at time t, then

all our results still go through, since this is the baseline case for all our results. However, while

the additional information is indeed likely to become common knowledge, in most cases, this

will only occur with at least some lag. If A-invertibility fails in the absence of the additional

information, while the additional lagged information must at least somewhat reduce agents’

filtering errors, it will not change the key feature of our results, namely, that the solution will

include Blaschke factors, in both II-RA and II-HA(∞) cases.38

5 Approximate Invertibility-Fundamentalness

This section examines, for possibly non-square systems, measures of approximate fundamental-

ness when A-invertibility fails.39

Two methods are notable in this regard: the first measure from Beaudry et al. (2016)

recommends using the difference in variances between the innovations process and the structural

shocks, motivated by the PI case (A.17) which can be written as

et = mt − Ezt,t−1 = E(zt − zt,t−1) = EA(zt−1 − zt−1.t−1) + EBεt (47)

Under invertibility, zt−1 − zt−1.t−1 has a value of 0, so that regressing the innovations process

et on this latter term yields (in the scalar case) a perfect lack of fit R2 = 0. For the univariate

case, in general, we have R2 = 1− var(εt)/var(et). In the multivariate case, cov(et) = EPEE′,

so that the departure of this from cov(EBεt) yields a measure of how similar the innovations

process is to the structural shocks.

However, in the empirical literature using VARs, it is common to focus on just one shock such

as in the examination of the hours-technology question in Gali (1999). To address fundamental-

ness on a shock-by-shock basis, one requires the Cholesky decomposition of EPEE′ = Ṽ Ṽ ′, or

else a decomposition that depends for example on long run effects of each shock, i.e., an SVAR

decomposition. The corresponding R2
i for each shock is then given by

R2
i = 1− uii U = Ṽ −1EBB′E′(Ṽ ′)−1 = uij (48)

37A general form of the factor model adds a measurement

xt = ∆(L)ft + vt, Γ(L)ft = ηt, A(L)vt = ut

where the vector ft contains unobserved common factors, vt is a vector of idiosyncratic components and (ηt, ut)
are white noise vectors such that E(utη′t) = 0. Then principle component estimation is used to obtain estimates
of the factor loadings f̂t. Chapter 16 of Kilian and Lutkepohl (2017) provides a very comprehensive treatment
of this “data-rich environment” approach and the relevant recent literature.

38GW show that, in an extended version of our illustrative example, the inclusion of lagged noisy information
on GDP mitigates, but does not eliminate, the agents’ informational problem.

39See also Canova and Ferroni (2022) for a treatment of (what we call) E-invertibility and the interpretation
of SVAR where the number of structural shocks exceeds the number of observables.
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The further is R2
i from 0, the worse is the fit.

5.1 A Multivariate Measure with Perfect Information

An obvious multivariate version of this is R = I− Ṽ −1EBB′E′(Ṽ ′)−1, and the maximum eigen-

value of R would then be a measure of the overall fit of the innovations to the fundamentals. In

addition, one can check whether any fundamentals can be perfectly identified by examining the

eigenvalues of the difference between the variances of the innovations and and the fundamentals

BPI = EPEE′ − EBB′E′ (49)

Any zero eigenvalues coupled with the corresponding eigenvector will provide a means of

decomposing the covariance matrix of the innovations EPEE′.

Turning to our second measure, Forni et al. (2019) suggest that one can use VARs as well

for ‘short systems’, where the number of observables is smaller than the number of shocks.40

Utilizing the underlying VARMA model, they suggest regressing the structural shocks against

the innovations process, i.e., for the structural shock i, choose the least-squares vector mi by

minimizing the sum of squares of εi,t −m′
iet. Clearly, the theoretical value of this is

m̂i = cov(et)
−1cov(et, εi,t) = (EPEE′)−1(EB)i (50)

where (EB)i denotes the ith column of EB. A measure of goodness of fit is then

FPIi = cov(εi,t)− cov(εi,t, et)cov(et)
−1cov(et, εi,t) = 1− (EB)′i(EP

EE′)−1(EB)i (51)

Thus one can as usual define a linear transformation of Met (where M is made up of the

rows m′
i) as representing the structural shocks, but only take serious note of those shocks where

the goodness of fit is close to 0. Once again, one can use the multivariate measure of goodness

of fit41

FPI = I −B′E′(EPEE′)−1EB (52)

where the diagonal terms then correspond to the terms Fi of (51). In (52), we note that

EPEE′ = cov(et) from the steady state of (B.27), and (EB)i = cov(et, εi,t).

If the number of measurements is equal to the number of shocks, and if Fi = 0 for all i, then

since FPI is by definition a positive definite matrix, it must be identically equal to 0. Of course,

it may be the case that none of the Fi are zero, but that a linear combination of the structural

shocks are exactly equal to a linear combination of the residuals. In addition, we might specify

a particular value of the R2 (e.g., R2
s = 0.9) fit of residuals to fundamentals such that we are

40Miranda-Agrippino and Ricco (2019) propose a related concept of “partial invertibility” when only a sub-
set of structural shocks is of interest and needs to be recovered for impulse response functions. Approximate
fundamentalness can then be viewed as a generalization to a continuous measure of the degree of invertibility-
fundamentalness.

41If the theoretical model is estimated with constraints on B and with direct estimates of the shock variances
σ2
1 , σ

2
2 , ..., then the last term in (52) must be pre- and post-multiplied by the matrix S = diag(1/σ1, 1/σ2, ....).
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happy to approximate the fundamental by the best fit of residuals.42

The maximum eigenvalue of FPI then provides a measure of overall non-fundamentalness.

It must of course be emphasized that none of these measures can be obtained directly from the

data. The papers cited above all provide details of how simulations on the underlying VARMA

models can indicate how to make appropriate inferences on the structural shocks using just the

data and a VAR estimation.

5.2 A Multivariate Measure with Imperfect Information

Collard and Dellas (2010) provide examples where there are large differences in the IRFs under

II and PI, and indeed Theorem 3 appears to indicate that this may be a major issue. In addition,

Levine et al. (2012), for an estimated DSGE model, find that such differences are quite large as

well.

As we have seen for the PI case above, it is quite straightforward to obtain goodness of fit

measures for the individual shocks from the multivariate measures, so for convenience, we only

list the latter. Firstly, the Beaudry et al. (2016) measure, which can be abbreviated to the

difference between the variances of the innovations and the fundamentals, is given by

BII = EZE′ − EBB′E′ (53)

where Z is given by (B.75).

Likewise, the multivariate Forni et al. (2019) measure can, after some effort, be written43

FII = I −B′J ′(JPAJ ′)−1JPAE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB (54)

Analogously to the PI case, EZE′ = cov(et), with EPAJ ′(JPAJ ′)−1JB = cov(et, εt).

The latter follows firstly because, from (25) and (B.77), we can write et = E(zt,t−1 − s̄1t) +

EPAJ ′(JPAJ ′)−1Jz̃t. The first term is clearly independent of εt, while the covariance of the

second term with εt is obtained by calculating E[z̃t+1ε
′
t+1] in (22).

For the remainder of this section, we only discuss the Forni measure, because (1) the Beaudry

measure is only suitable for the square case when numbers of measurements and shocks are the

same; (2) given our main results on the role of Blaschke factors under II, if y = (L−a)/(1−aL)ε,
then it is easy to show that the B measure for y is 0, whereas the F measure is 1− a2.

We can bring together (52) and (54) in the following final theorem of the paper.

Theorem 7. Consider the more general case with the number of structural shocks possibly

greater than the number of measurements. (a) All zero eigenvalues of FPI or FII , for the PI or

II cases respectively, correspond to a perfect fit between a linear combination of fundamentals

and a best regression fit of residuals; (b) The number of eigenvalues of FPI or FII that are

less than 1 − R2
s, where R

2
s is the chosen threshold for R2, correspond to the number of linear

combinations of fundamentals that can be obtained approximately from the residuals.

42A perfect fit in the Forni et al. (2019) case is Fi = 0, R2
i = 1.

43The same comment applies as in the footnote to (52). This follows because PA depends on Bcov(εt)B
′, so

is invariant to whether the variances of the shocks are normalized to 1 or not.
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Proof. See Appendix B.10.

In addition, diagonal terms FIIi correspond to a measure of goodness of fit of the innovations

residuals to the ith structural shock and provide information for each shock individually. Note

however that these measures correspond to the case when all observables are of current variables.

While it is not difficult to perform the appropriate calculations in the case when some variables

are current and others are lagged, it is not straightforward to write down a mathematical

expression in such a case. Nevertheless, we can apply the ideas above when all variables are

lagged. In particular, the theoretical value of FII,lagged can now be defined as

FII,lagged = cov(εt)− cov(εt, et−1)cov(et−1)
−1cov(et−1, εt) (55)

where cov(et−1) is of course equal to cov(et) = EZE′, so the only change is to cov(et−1, εt),

which after a little effort can be derived as

cov(et−1, εt) = EAPAJ ′(JPAJ ′)−1JB − EAZE′(EZE′)−1EPAJ ′(JPAJ ′)−1JB

+EPAJ ′(JPAJ ′)−1JFB − EPAJ ′(JPAJ ′)−1JFPAJ ′(JPAJ ′)−1JB (56)

Then the fit FII,laggedi to the ith shock is just given by the ith main diagonal term of FII,lagged.
In the next section, we compare numerically these PI and II multivariate measures of the

fit of the innovations to the fundamentals for a DSGE model.

6 Numerical Application to a Richer RBC Model

This section further illustrates our theoretical results using numerical solutions of a more general

RBC model than that used in Section C. The model has investment adjustment costs, variable

hours and two shock processes. This first feature introduces more forward-looking behaviour

into the model and two more non-predetermined variables, investment and the cost of capital.

These provide an extra source of divergence between the PI and II solutions44 and therefore an

additional source of non-invertibility as well. See Appendix E for full details.

We implement the invertibility conditions of Theorem 3 and the multivariate measure of

goodness of fit set out in Section 5. For the latter, our focus is on (52) and (54), the corre-

sponding measures of correlation between et and εt, for the PI and II cases, respectively, where

cov(et) = EPEE′ and cov(et) = EZE′ are the covariance matrices of the innovation processes

for the two cases, and cov(εt) of the structural shocks in the model. As noted, the maximum

eigenvalue provides a measure of overall non-fundamentalness. In addition, any eigenvalues

close to zero provide information as to which structural shocks can be satisfactorily recovered

even though the RE solution as a whole is not invertible.

The model is solved and simulated through Theorem 1 and the conversion procedure set out

in Appendix B.1. Table 1 below summarizes a complete set of combinations of two observables

for this model, i.e., c = 8!
(8−2)!2! = 28, based on the rank and stability conditions of Theorem

44In these computations, II refers to the II-RA equilibrium.
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3. Table 1 also checks the difference between PI and II in terms of identifying the fundamental

(structural) shocks from the perspective of VARs via the eigenvalues of FPI and FII , assuming

that the RBC Model is the true DGP. We consider two parameter settings for the risk parameter

in the a Cobb-Douglas households utility function: σ = 0.3, 2.

Information Set E-invertibility A-invertibility Notes Eigenvalues Diagonal Values

c = 8!
(8−2)!2! = 28 under PI? of FPI and FII of FPI and FII

RBC Case 1: σ = 2 and α = 0.67

(Ct, It), (Ht, Rt) E, EB, J ,JB are of full rank
(It, Rt), (It,Wt) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0] FPIi = FIIi = [0, 0]

(It, RK,t), (It, Ht), (It, Vt) F (I −B(JB)−1J) is stable

(Yt, Ct), (Ct, Ht), (Yt, Rt) E, EB are of full rank
(Yt, Ht), (Ct,Wt), (Ct, Rt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]
(Yt, It), (Ht,Wt), (Wt, Rt) J ,JB are of full rank eig(FII) > 0 FIIi = [0.011, 0.781]

(Yt,Wt), (Ct, Vt), (Rt, Vt), (Wt, Vt) F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Yt, RK,t), (Ct, RK,t), (Ht, Vt) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0 FPIi = [0.000, 0.086]

(Ht, RK,t), (Wt, RK,t), (RK,t, Vt) J ,JB are of full rank eig(FII) > 0 FIIi = [0.014, 0.336]
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are rank deficient eig(FII) > 0 FIIi = [0.096, 0.983]

(Yt, Vt) NO NO EB, JB are rank deficient eig(FPI) > 0 FPIi = [0.032, 0.968]
eig(FII) > 0 FIIi = [0.049, 0.953]

RBC Case 2: σ = 0.3 and α = 0.67

(Ct, It), (Ct, Rt), (Ct, RK,t) E, EB, J ,JB are of full rank
(It, Rt), (It, Ht), (It, RK,t) YES YES A(I −B(EB)−1E) is stable eig(FPI) ≡ eig(FII) = [0, 0] FPIi = FIIi = [0, 0]
(Ht, Rt), (Wt, Rt), (It,Wt) F (I −B(JB)−1J) is stable

(Yt, Ct), (Ct, Ht), (Ct, Vt) E, EB are of full rank
(Yt, Ht), (Ct,Wt), (It, Vt) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]
(Yt, It), (Ht,Wt), (Ht, Vt) J ,JB are of full rank eig(FII) > 0 FIIi = [0.014, 0.748]

(Yt,Wt), (Yt, Rt), (Rt, Vt), (Wt, Vt) F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Yt, RK,t), (RK,t, Vt) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0 FPIi = [0.001, 0.089]

J ,JB are of full rank eig(FII) > 0 FIIi = [0.014, 0.320]
F (I −B(JB)−1J) is not stable

E, EB are of full rank
(Ht, RK,t), (Wt, RK,t) NO NO A(I −B(EB)−1E) is not stable eig(FPI) > 0 FPIi = [0.004, 0.686]

J ,JB are of full rank eig(FII) > 0 FIIi = [0.004, 0.686]
F (I −B(JB)−1J) is stable

E, EB are of full rank
(Rt, RK,t) YES NO A(I −B(EB)−1E) is stable eig(FPI) = [0, 0] FPIi = [0, 0]

J ,JB are rank deficient eig(FII) > 0 FIIi = [0.039, 0.995]

(Yt, Vt) NO NO EB, JB are rank deficient eig(FPI) > 0 FPIi = [0.039, 0.961]
eig(FII) > 0 FIIi = [0.048, 0.953]

Table 1: Exact and Approximate Invertibility Checks for Full RBC Model
Notes: We check Conditions in Lemma 2 and Theorem 2 for the full RBC model with investment adjustment costs and

variable hours. We consider two cases for (σ, α) = (2, 0.67) and (σ, α) = (0.3, 0.67). Note that diagonal values of FPI and

FII differ for different choices of information sets in each category; the values reported are for the first entry and are only

indicative.

With two shock processes, At and Gt (normalized such that cov(εt) = I), for the case

σ = 2, the following 7 combinations of two observables (from a set of 8 possible observables:

(Yt, Ht, Ct, It,Wt, Rt, RK,t, Vt)) result in A-invertibility: mE
t = mA

t = (Ct, It), (Ht, Rt), (It, Rt),

(It,Wt), (It, RK,t), (It, Ht) and (It, Vt). Since mE
t = mA

t , these combinations also imply E-

invertibility. On the other hand, for the remaining 21 combinations, A-invertibility fails. Only

7 combinations, (Yt, RK,t), (Ct, RK,t), (Ht, Vt), (Ht, RK,t), (Wt, RK,t), (Vt, RK,t) and (Yt, Vt),

fail the PMIC under the assumption of PI and would not be picked up by a standard RE

solution of the DGP (the model) that imposes PI as an endowment. For the case σ = 0.3,

the set of A-invertible combinations is increased for the analytical model and 4 combinations,

(Yt, RK,t), (RK,t, Vt), (Ht, RK,t), (Wt, RK,t) and (Yt, Vt), would fail the PMIC in the absence of

informational considerations (i.e., under PI as an endowment).
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Recall Theorem 3 that establishes an extra condition, given that models PI are E-invertible,

that the matrices J and JB are of full rank, and F (I −B(JB)−1J) is a stable matrix (has all

eigenvalues inside the unit circle), for the model to be A-invertible too. In Table 1, for both

values of σ, we find only two cases, (Rt, RK,t) and (Yt, Vt), when this rank condition is not

satisfied.

The last column of Table 1 reports the diagonal values of the FPI and FII matrices for

the first entry in the first column. Any value close to zero reported in the diagonal matrices

indicates an exact fit of the innovations to the structural shocks in the models. Then these

shocks can be described as approximately fundamental. The reported values are indicative of

those for all the combinations in each of the cells in the first column. We find that, in all cases

the technology shock, At, is in fact approximately fundamental, but the government spending

shock Gt is not. This is illustrated in Figures 3 and 4 for the case of σ = 2 with observables

(Yt, Ct). By contrast Figures 5 and 6 examine the case with observables (Yt, Vt) which results

in the technology shock a poor approximation to being fundamental.45

7 Concluding Comments

This paper has brought together in a unifying framework for studying the invertibility (funda-

mentalness) of possible VAR representations of DSGE RE solutions, heterogeneous agents and

informational frictions in such models. A general conclusion is that validating a DSGE model

by comparing its impulse response functions with those of a data VAR is problematic when

we drop the common assumption in the literature that agents have PI as an endowment. The

reason for this is that, in an II setting (either II-RA or the limiting case of II-HA), the RE solu-

tion introduces Blaschke factors and non-invertibility/non-fundamentalness (‘hidden dynamics’)

emerges.

There are a number of possible avenues for future research. First, as Angeletos and Lian

(2016) have pointed out, the solution of dynamic heterogeneous agent models with time-varying

shock processes and dispersed information in a HA setting remains a major challenge. We have

provided a general solution only for the limiting case where idiosyncratic shocks dominate

aggregate shocks. One direction for research which we are pursuing is to investigate in the time

domain how a variation of this in Theorem 2 can be implemented that will generalize to multiple

shock processes the finite-space results in the frequency domain in Rondina and Walker (2021)

using the Wiener-Kolmogorov prediction formulae. Such a solution would also generalize the

II-HA(Σ) case for our motivating example in Section 3.3 and results in Huo and Takayama

(2018) and Angeletos and Huo (2021). Our analysis of II is also restrictive in another sense that

all agents have the same aggregate data in their information sets (although Corollary 5.2 allows

it to differ from that of the econometrician). It would be of interest to relax this assumption to

allow for agents with different II observables mA
t as studied in Lubik et al. (2020).

Second, as is usual in the related literature, a Gaussian framework is adopted through-

45Appendix F carries out a further illustrative exercise on a RBC model with fiscal policy and a tax news
shock.
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Figure 3: Full RBC Model with σ = 2: Impulse Responses to a Technology Shock, At. Observ-
ables Yt, Ct. An Example of an Approximately Fundamental Shock
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Figure 4: Full RBC Model with σ = 2: Impulse Responses to a Government Spending Shock,
Gt. Observables Yt, Ct. An Example of a Non-fundamental Shock
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Figure 5: Full RBC Model with σ = 2: Impulse Responses to a Technology Shock, At. Observ-
ables Yt, Vt. An Example of an Non-Fundamental Shock
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Figure 6: Full RBC Model with σ = 2: Impulse Responses to a Government Spending Shock,
Gt. Observables Yt, Vt. An Example of a Non-fundamental Shock
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out our paper. Gouriéroux et al. (2020)46 relax this assumption in their examination of both

identification and fundamentalness issues. Although technically challenging a generalization of

our results in this direction focusing on the information assumptions in the DGP would be of

interest.
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Beaudry, P., Fève, P., Guay, A., and Portier, F. (2016). When is Nonfundamentalness in SVARs

A Real Problem? TSE Working Papers 16-738, Toulouse School of Economics (TSE).

Blanchard, O. and Kahn, C. (1980). The Solution of Linear Difference Models under Rational

Expectations. Econometrica, 48, 1305–1313.

Blanchard, O., Lorenzoni, G., and L’Huillier, J. (2013). News, Noise, and Fluctuations: An

Empirical Exploration. American Economic Review, 103(7), 3045–70.

Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77, 623–685.

46See also Funovitis (2020) for a critical comment.

36



Bloom, N., Floetotto, M., Jaimovich, N., Saporta-Eksten, I., and Terry, S. J. (2018). Really

uncertain business cycles. Econometrica, 86(3), 1031–1065.

Brockett, R. W. and Mesarovic, M. D. (1965). The reproducibility of multivariable systems.

Journal of Mathematical Analysis and Applications, 11, 548–563.

Broer, T., Kohlhas, A., Mitman, K., and Schlafmann, K. (2021). Information and Wealth

Heterogeneity in the Macroeconomy. CEPR Press Discussion Paper No. 15934.

Canova, F. (2007). Methods for Applied Macroeconomic Research. Princeton University Press.

Canova, F. and Ferroni, F. (2022). Mind the gap! stylized dynamic facts and structural models.

Forthcoming, American Economic Journal: Macroeconomics.

Canova, F. and Sahneh, M. H. (2017). Are Small-Scale SVARs Useful for Business Cycle

Analysis? Revisiting Non-Fundamentalness. Journal of Economic Dynamics and Control.

Chahrour, R. and Jurado, K. (2022). Recoverability and Expectations-Driven Fluctuations.

Review of Economic Studies, 89(1), 181–213.

Christiano, L., Eichenbaum, M., and Evans, C. (2005). Nominal rigidities and the dynamic

effects of a shock to monetary policy. Journal of Political Economy, 113(1), 1–46.

Christiano, L. J., Motto, R., and Rostagno, M. (2014). Risk shocks. American Economic

Review, 104, 27–65.

Cogley, T. and Nason, J. M. (1995). Output Dynamics in Real-Business-Cycle Models. American

Economic Review, 85(3), 492–511.

Collard, F. and Dellas, H. (2010). Monetary Misperceptions, Output and Inflation Dynamics.

Journal of Money, Credit and Banking, 42, 483–502.

Collard, F., Dellas, H., and Smets, F. (2009). Imperfect Information and the Business Cycle.

Journal of Monetary Economics, 56, S38–S56.

David, J. M., Hopenhayn, H. A., and Venkateswaran, V. (2016). Information, misallocation,

and aggregate productivity. Quarterly Journal of Economics, 131(2), 943–1005.

Ellison, M. and Pearlman, J. G. (2011). Saddlepath learning. Journal of Economic Theory,

146(4), 1500–1519.

Fernandez-Villaverde, J., Rubio-Ramirez, J., Sargent, T., and Watson, M. W. (2007). ABC

(and Ds) of Understanding VARs. American Economic Review, 97(3), 1021–1026.

Forni, M., Gambetti, L., Lippi, M., and Sala, L. (2017). Noisy News in Business Cycles.

American Economic Journal: Macroeconomics, 9(4), 122–152.

Forni, M., Gambetti, L., and Sala, L. (2019). Structural VARs and Non-invertible Macroeco-

nomic Models. Journal of Applied Econometrics, 34(2), 221–246.

37



Funovitis, B. (2020). Comment on Gouriéroux, Monfort, Renne (2019): Identification and

Estimation in Non-Fundamental Structural VARMA Models. Papers 2010.02711, arXiv.org.

Gali, J. (1999). Technology, Employment and the Business Cycle: Do technology Shocks Explain

Aggregate Fluctuations? American Economic Review, 89(1), 249–271.

Giacomini, F. (2013). The relationship between VAR and DSGE models . In T. B. Fomby,

L. Kilian, and A. Murphy., editors, VAR Models in Macroeconomics, Financial Econometrics,

and Forecasting - New Developments and Applications: Essays in Honor of Christopher A.

Sims, volume 32 of Advances in Econometrics. Emerald Group Publishing Limited.

Gouriéroux, C., Monfort, A., and Jean-Paul Renne, J.-P. (2020). Identification and Estimation

in Non-Fundamental Structural VARMA Models. The Review of Economic Studies, 87(4),

1915–1953.

Graham, L. and Wright, S. (2010). Information, heterogeneity and market incompleteness.

Journal of Monetary Economics, 57(2), 164–174.

Hansen, L. P. and Sargent, T. J. (1980). Formulating and Estimating Dynamic Linear Rational

Expectations Models. Journal of Economic Dynamics and Control, 2(1), 7–46.

Huo, Z. and Pedroni, M. (2020). A single-judge solution to beauty tests. American Economic

Review, 110(2), 526–568.

Huo, Z. and Takayama, N. (2018). Rational Expectations Models with Higher Order Beliefs.

Mimeo.

Ilut, C. and Saijo, H. (2021). Learning, confidence and business cycles. Journal of Monetary

Economics, 117, 354–376.

Jorda, O. (2005). Estimation and Inference of Impulse Responses by Local Projections. Amer-

ican Economic Review, 95(1), 161–82.

Kehoe, P. (2006). How to Advance Theory with Structural VARs: Use the Sims-Cogley-Nason

Approach. NBER Working Papers 12575.

Keynes, J. M. (1936). A General Theory of Employment, Interest and Money. Cambridge

University Press.

Kilian, L. and Lutkepohl, H. (2017). Structural Vector Autoregressive Analysis. Cambridge

University Press.

Klein, P. (2000). Using the generalized schur form to solve a multivaraite linear rational expec-

tations model. Journal of Economic Dynamics and Control, 24(10), 1405–1423.

Krusell, P. and Smith, Jr., A. A. (1998). Income and wealth heterogeneity in the macroeconomy.

Journal of Political Economy, 106(5), 867–896.

38



Leeper, E. M., Walker, T., and Yang, S. S. (2013). Fiscal foresight and information flow.

Econometrica, 81(3), 1115–1145.

Levine, P., Pearlman, J., Perendia, G., and Yang, B. (2012). Endogenous Persistence in an

estimated DSGE Model Under Imperfect Information. Economic Journal, 122(565), 1287–

1312.

Levine, P., Pearlman, J. G., and Yang, B. (2020). DSGE Models under Imperfect Information:

A Dynare-based Toolkit. School of Economics Discussion Papers 0520, University of Surrey.

Lindquist, A. and Picci, G. (2015). Linear Stochastic Systems: A Geometric Approach to

Modeling, Estimation and Identification. Springer Series in Contemporary Mathematics.

Lippi, M. and Reichlin, L. (1994). VAR analysis, Nonfundamental Representations, Blaschke

Matrices. Journal of Econometrics, 63(1), 307–325.

Lubik, T. A., Mertens, E., and Matthes, C. (2020). Indeterminacy and Imperfect Information.

Deutsche Bundesbank, Discussion Paper No 01/2020.

Lucas, R. E. (1975). An equilibrium model of the business cycle. Journal of Political Economy,

83, 1113–1144.

Minford, A. and Peel, D. (1983). Some Implications of Partial Information Sets in Macroeeco-

nomic Models Embodying Rational Expectations. Manchester School, 51, 225–249.

Miranda-Agrippino, S. and Ricco, G. (2019). Identification with External Instruments in Struc-

tural VARs under Partial Invertibility. CEPR Discussion Paper no. 13853 and forthcoming,

Journal of Monetary Economics.

Neri, S. and Ropele, T. (2012). Imperfect information, real-time data and monetary policy in

the euro area. Economic Journal, 122, 651–674.

Nimark, K. (2008). Dynamic Pricing and Imperfect Common Knowledge. Journal of Monetary

Economics, 55, 365–382.

Nimark, K. P. (2014). Man-Bites-Dog Business Cycles. American Economic Review, 104(8),

2320–67.

Okuda, T., Tsuruga, T., and Zanetti, F. (2021). Imperfect Information, Heterogeneous Demand

Shocks,and Inflation Dynamics. Economics Series Working Papers 934, University of Oxford,

Department of Economics.

Pearlman, J., Currie, D., and Levine, P. (1986). Rational Expectations Models with Private

Information. Economic Modelling, 3(2), 90–105.

Pearlman, J. G. (1986). Diverse Information and Rational Expectations Models. Journal of

Economic Dynamics and Control, 10(1-2), 333–338.

39



Pearlman, J. G. (1992). Reputational and Non-reputational Policies under Partial Information.

Journal of Economic Dynamics and Control, 16(2), 339–357.

Pearlman, J. G. and Sargent, T. J. (2005). Knowing the forecasts of others. Review of Economic

Dynamics, 8(2), 480–497.

Plagborg-Moller, M. and Wolf, C. K. (2021). Local Projections and VARS Estimate the Same

Impulse Responses. Econometrica, 89(2), 955–980.

Rondina, G. and Walker, T. B. (2021). Confounding Dynamics. Journal of Economic Theory,

196.

Shiryayev, A. N. (1992). Selected Works of A. N. Kolmogorov. Springer Science and Business

Media Dordrecht. Edited volume.

Sims, C. A. (1989). Models and Their Uses. American Journal of Agricultural Economics,

71(2), 489–494.

Sims, C. A. (2002). Solving Linear Rational Expectations Models. Computational Economics,

20(1–2), 1–20.

Sims, E. (2012). News, Non-Invertibiliy and Structural VARs . In N. Balke, F. Canova, F. Milani,

and M. A. Wynne, editors, DSGE Models in Macroeconomics: Estimation, Evaluation, and

New Developments, volume 28 of Advances in Econometrics, pages 81–136. Emerald Group

Publishing Limited.

Smets, F. and Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach. American Economic Review, 97(3), 586–606.

Stock, J. and Watson, M. (2018). Identification and Estimation of Dynamic Causal Effects in

Macroeconomics Using External Instruments. The Economic Journal, pages 917–948.

Townsend, R. M. (1983). Forecasting the forecasts of others. Journal of Political Economy,

91(4), 546–588.

Woodford, M. (2003). Imperfect common knowledge and the effects of monetary policy. In

Knowledge, Information, and Expectations in Modern Macroeconomics : in honor of Edmund

S. Phelps., pages 25–58. Princeton University Press.

Youla, D. C. (1961). On the factorization of rational matrices. IRE Transactions on Information

Theory, 17, 172–189.

Online Appendix

A Background Results

First, we justify our form of state-space representation used in the paper and prove the Poor

Man’s Invertibility Condition (PMIC). Next, we set out several fairly standard results on the

40



solution to Riccati equation, spectral analysis and recoverability and the econometrician’s inno-

vations representation that are essential to understand the theorems in the paper, and we here

we cover these briefly.

A.1 Equivalence of Various State-Space Models

We show that all of the state-space models that are used in the statistics, control theory and

econometrics literature can be represented by that used in the main text.

The usual model used in the statistics literature, Model 1, includes measurement error η1t

st+1 = A1st +B1ε1,t+1 mt = C1vt +D1η1t (A.1)

In the control theory literature, with possible correlation between ε2t and measurement error

η2t, Model 2 is given by

wt+1 = A2wt +B2ε2t mt = C2wt +D2η2t (A.2)

In Fernandez-Villaverde et al. (2007) and much of the econometrics literature, Model 3 is given

by

xt+1 = A3xt +B3ε3,t+1 (i.e., xt = A3xt−1 +B3ε3,t) mt = C3xt−1 +D3ε3t (A.3)

For Model 1, add η1t to the state-space, so that it can be rewritten as[
η1,t+1

vt+1

]
=

[
0 0

0 A1

][
η1,t

vt

]
+

[
I 0

0 B1

][
η1,t+1

ε1,t+1

]
mt =

[
D1 C1

] [ η1,t

vt

]
(A.4)

For Model 2, if D2 = 0, then the statistical properties of wt are identical whether we date

the shock as ε2t or ε2,t+1; thus Model 2 is equivalent to the main text model when D2 = 0.

Otherwise, include ε2t and η2t into the state-space
ε2,t+1

η2,t+1

wt+1

 =


0 0 0

0 0 0

B2 0 A2



ε2,t

η2,t

wt

+


0 I

I 0

0 0


[
η2,t+1

ε2,t+1

]
mt =

[
0 D2 C2

]
ε2,t

η2,t

wt


(A.5)

Model 3 can be written in the form of the main text model by appending both ε3t and xt−1 to

the state-space
ε3,t+1

xt

xt+1

 =


0 0 0

0 0 I

0 0 A3




ε3,t

xt−1

xt

+


I

0

B3

 ε3,t+1 mt =
[
D3 C3 0

]
ε3,t

xt−1

wt


(A.6)
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A.2 Proof of the PMIC

From (41) we have εt = D̃−1(mE
t − C̃Lst) where L is the lag operator. Hence from (41) we have

(I − ÃL)st = B̃εt = B̃D̃−1(mE
t − C̃Lst)

from which we obtain st = [I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t and hence

εt = D̃−1(mE
t − C̃st−1) = D̃−1(mE

t − C̃[I − (Ã− B̃D̃−1C̃)L]−1B̃D̃−1mE
t−1) (A.7)

Expanding (I −X)−1 = I +X +X2 + · · · we then have

εt = D̃−1

mE
t − C̃

∞∑
j=1

(Ã− B̃D̃−1C̃)jB̃D̃−1mE
t−j

 (A.8)

A necessary and sufficient condition for the summation to converge is that Ã − B̃D̃−1C̃ has

stable eigenvalues (eigenvalues within the unit circle in the complex plane).

The PMIC transforms into ABE notation as follows: we note that the following term in

(A.8) can be written in two equivalent ways

C̃(Ã− B̃D̃−1C̃)j = ẼÃ(Ã− B̃(ẼB̃)−1ẼÃ)j = Ẽ(Ã(I − B̃(ẼB̃)−1Ẽ))jÃ (A.9)

so that the PMIC requirements are that ẼB̃ is invertible and that Ã(I−B̃(ẼB̃)−1Ẽ) has stable

eigenvalues.

A.3 The Spectrum of a Stochastic Process, Blaschke Factors

The spectrum of a stochastic process is a representation of all its second moments - auto, cross

and auto-cross covariances, so that a VAR with sufficient lags will pick up all of these moments

to a high degree of accuracy.

The spectrum (or spectral density) Φy(L) of a stochastic process yt of dimension r is defined

to be Φy(L) =
∑∞

k=−∞ cov(yt, yt−k)L
k, and this is a rational function of L if yt can be expressed

as a state-space system with finite dimension. It is a standard result that the spectrum of the

ABE system above is given by Ẽ(I − ÃL)−1B̃B̃′(I − Ã′L)−1Ẽ′.

Definition 3. A rational spectral density Φy(L) admits a spectral factorization of the form

Φy(L) = Z(L)Z ′(L−1). A minimal spectral factorization (Baggio and Ferrante, 2016) is one

where the McMillan degree of Z(L) is a minimum.47

Of importance for our main results below is the Blaschke factor b(L) = (1 − aL)/(L − a),

which has the easily verifiable property that b(L)b(L−1) = 1. This implies that if y1t = εt is a

scalar white noise process, with spectrum given by Φy1(L) = var(εt), then y2t = b(L)εt has the

47The Smith-McMillan representation (Youla, 1961) of a rational matrix function Z(L) is given by Z(L) =

Γ(L)diag(n1(L)
d1(L)

, ..., nr(L)
dr(L)

)Θ(L), where Γ(L),Θ(L) have determinants equal to a constant, dk(L) divides dk+1(L)

and nk(L) divides nk−1(L). The McMillan degree of Z(L) is the highest power of L in d1(L)d2(L)...dr(L).
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same spectrum. The second-moment properties of y1t and y2t are therefore identical; however,

although there is a minimal realization of y2t in ABCD form (xt =
1
axt−1 + (a − 1

a)εt, yt =

xt−1 − aεt), it is not a minimal spectral factorization of the process, which is given by the

fundamental representation y2t = ηt, where var(ηt) = var(εt). Crucially the IRFs of y1t and y2t

in response to a shock to εt are completely different, with the latter being non-zero at all lags.

More generally, for the scalar case, suppose Z(L) = n(L)/d(L). Now use a Blaschke factor

to define Z1(L) = (1 − aL)/(L − a)Z(L), so that Z1(L)Z1(L
−1) = Z(L)Z(L−1). This changes

n(L) to n(L)(1 − aL) and d(L) to d(L)(L − a). The degree of the latter is obviously greater

than that of d(L), so that Z1(L) is a non-minimal spectral factorization. To reiterate the point

raised earlier, if yt = Z1(L)εt represents the true response to the structural shock, then a VAR

econometrician will estimate a very good approximation to Z(L) but would have no way of

inferring the correct impulse response.

We can now draw on these general results to prove (A.12) in Section 4.9 of the main text.

The joint spectrum of (xt,mt) is given by[
σ 1

0 b−L
1−bL

][
σ 0

1 b−L−1

1−bL−1

]
=

[
1 + σ2 b−L−1

1−bL−1

b−L
1−bL 1

]
(A.10)

Factorizing this in invertible form yields[ √
1 + σ2 0

b−L
1−bL

1√
1+σ2

σ√
1+σ2

][ √
1 + σ2 b−L−1

1−bL−1
1√

1+σ2

0 σ√
1+σ2

]
(A.11)

It follows that

xt =
√
1 + σ2e1t mt =

b− L

1− bL

1√
1 + σ2

e1t +
σ√

1 + σ2
e2t (A.12)

where e1t, e2t are orthogonal white noise processes with unit variance. The expression for mt

can be rewritten as

mt =
b√

1 + σ2
e1t −

(1− b2)L

1− bL

1√
1 + σ2

e1t +
σ√

1 + σ2
e2t (A.13)

It follows that
√
1 + σ2e1t is the prediction error for xt and

be1t+σe2t√
1+σ2

is the prediction error for

mt.

A.4 Recoverability and Agents’ Information Sets

Recoverability, reviewed more didactically in Appendix H, makes the assumption that a vec-

tor process can be represented as a finite order VARMA: whether by direct estimation, or as

an approximation, based on a finite order VAR.48 A fundamental VARMA representation is a

minimal spectral factorization; but there is a finite set of alternative non-fundamental represen-

tations of the same order that have an identical autocovariance (Lippi and Reichlin, 1994: each

48See Appendix H.
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of these is also a minimal spectral factorization of the same process.

Thus a VAR econometrician who is well enough informed can reconstruct an alternative

minimal spectral factorization that can approximate a true minimal spectral factorization, and

the shocks to any such representation are recoverable. However, the VAR econometrician cannot

reconstruct a non-minimal spectral factorization; we show below that this arises under II , in

the absence of A-invertibility. Key to this is the following lesser-known result due to Lindquist

and Picci (2015) in their Corollary 16.5.7 and Lemma 16.5.8:

Lemma 3. Let (36) be a minimal representation of the spectral factor of a stationary stochas-

tic process. There is a one-to-one correspondence between symmetric solutions of the Riccati

equation P = ÃP Ã′ − ÃP Ẽ′(ẼP Ẽ′)−1ẼP Ã′ + B̃B̃′ and minimal spectral factors that retain

stationarity; this correspondence is defined via the state-space representation

wt = Ãwt−1 + PẼ′(ẼP Ẽ′)−1ηt mE
t = Ẽwt ηt ∼ N(0, ẼP Ẽ′) (A.14)

Thus, for a square system, these alternative solutions for P lead to transfer functions from

shocks to observables that differ by one or more Blaschke factors. However, what we need

subsequently is a result that we can deduce from this lemma, which derives from the PMIC

matrices associated with (A.14) that arise from the general solution for P and the particular

solution P = B̃B̃′, namely Ã− ÃP Ẽ′(ẼP Ẽ′)−1Ẽ and Ã− ÃB̃(ẼB̃)−1Ẽ:

Corollary A.3. If P is a symmetric solution of the Riccati equation of Lemma 2, then the

eigenvalues of Ã − ÃP Ẽ′(ẼP Ẽ′)−1Ẽ and Ã − ÃB̃(ẼB̃)−1Ẽ are either identical or reciprocals

of one another.

A.5 The Econometrician’s Innovations Process and the Riccati Equation

We now consider the general nature of the time series representation of the system that the

econometrician can extract from the history of the observables. At this stage, we do need to

make any assumptions about the number of observables vs shocks, other than to assume that

m ≤ k.

For any given set of observables, mE
t , the econometrician’s updating equation for state

estimates, assuming convergence of the Kalman filtering matrices, is

Etst+1 = ÃEt−1st + ÃPEẼ′(ẼPEẼ′)−1et, et = mE
t − ẼEt−1st et ∼ N(0, ẼPEẼ′)

(A.15)

where Es denotes expectations conditioned on the econometrician’s information set at time

s, and et ≡ mE
t − Et−1m

E
t , the innovations to the observables in period t, conditional upon

information in period t− 1.

The Riccati matrix PE = cov(st − Et−1st) for this Kalman filter is given in the limit by

PE = QEPEQE
′
+ B̃B̃′ where QE = Ã− ÃPEẼ′(ẼPEẼ′)−1Ẽ (A.16)
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To ensure stability of the solution PE , it must satisfy the convergence condition that QE is a

stable matrix, analogous to the requirement for QA above; a sufficient condition is either that

Ã is a stable matrix, or else the controllability of (Ã, B̃) and observability49 of (Ẽ, Ã). We also

have the following result that ensures uniqueness of the solution algorithm for II:

Lemma 4. There is a unique positive semi-definite Riccati matrix PE that has the property

that QE is a stable matrix.

Proof. Clearly Ã must be stable, and the other PMIC condition discussed after (A.9) is that

Ã− ÃPEẼ′(ẼPEẼ′)−1Ẽ is stable. But if this latter condition does not hold then we have seen

from (B.27) and the discussion following that PE is not the appropriate solution of the Riccati

equation.

Note that if we subtract the first equation of (A.15) from the first equation of (36), we are

able to evaluate cov(st+1−Etst+1, εt+1) = B̃, from which it follows that the covariance between

the innovations process and the shocks is given by cov(et, εt) = cov(E(st − Et−1st), εt) = ẼB̃.

We shall use this property later to evaluate how correlated are the residuals from a VAR to the

structural shocks.

The Kalman Filter updated expectation of the state st given the extra information at time

t is given by Etst = Et−1st + PEẼ′(ẼPEẼ′)−1et, and a little manipulation of (A.15) enables

us to obtain the alternative steady state innovations representation as

Etst = ÃEt−1st−1 + PEẼ′(ẼPEẼ′)−1et mE
t = ẼEtst (A.17)

This representation will be our main focus, but the representation of the innovations process in

(A.15) is important in proving some of our theoretical results because it provides a means of

evaluating the innovations process, and is essential for addressing approximate fundamentalness.

The innovations et to this representation have a dimension m equal to the number of ob-

servables, and the representation is valid given our general assumption as stated above that

m ≤ k.

The discussion up to now then leads to the following Lemma which applies for any general

information set:

Lemma 5. The innovations representation (A.17) applies for m ≤ k iff Ã and QE has stable

eigenvalues. Sufficient conditions for this to hold are the observability and controllability of

(Ã, B̃, Ẽ).

A.6 The Innovations Representation Under E-invertibility

When the structural shock system (36) is E-invertible, this means that PE = B̃B̃′ is a stable

solution to the Riccati equation, which in turn requires QE = Ã− ÃB̃(ẼB̃)−1Ẽ to be a stable

matrix. This is identical to the PMIC requirement and implies that the innovations process

et from the filtering problem converges to ẼB̃εt as t → ∞. As a result, the state vector st is

observable asymptotically by the econometrician.

49Reduction to minimal form with these properties is fairly straightforward.
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B Proofs of Theorems, Lemmas and Corollaries

B.1 Proof of Theorem 1: Transformation of System to PCL Form

B.1.1 The Problem Stated

An important feature of the RE solution procedure of the seminal paper Blanchard and Kahn

(1980) is that it provided necessary and sufficient conditions for the existence and uniqueness of

a solution for linearized model. The only general results on II solutions to rational expectations

models date back to PCL, who utilize the Blanchard-Kahn set-up, and generalize this result.

Theorem 1 states that Equation (14), re-expressed here

A0Yt+1,t +A1Yt = A2Yt−1 +Ψεt (B.1)

with agents’ measurements

mA
t = LYt (B.2)

can be written in the form (15) and (16) originally used by PCL, re-stated here as[
zt+1

xt+1,t

]
=

[
G11 G12

G21 G22

][
zt

xt

]
+

[
H11 H12

H21 H22

][
zt,t

xt,t

]
+

[
B

0

]
εt+1 (B.3)

with agents’ measurements given by

mA
t =

[
M1 M2

] [ zt

xt

]
+
[
M3 M4

] [ zt,t

xt,t

]
(B.4)

To prove Theorem 1, the next section describes a completely novel algorithm for converting the

state space (B.1), (B.2) under II to the form in (B.3) and (B.4). We assume that the system

is ‘proper’, by which we mean the matrix A1 is invertible; this precludes the possibility of a

system that includes equations of the form hTYt+1 = 0, but it is fairly easy to take account of

these as well.

B.1.2 An Iterative Algorithm

Although complicated, the basic stages for the conversion are fairly simple:

1. We first (Stages 1 to 3) find the singular value decomposition for the n × n matrix A0

(which is typically of reduced rank m < n) which allows us to define a vector of m

forward-looking variables that are linear combinations of the original Yt.

2. We then introduce a novel iterative stage (Stage 4) which replaces any forward-looking

expectations that use model-consistent updating equations. This reduces the number of

equations with forward-looking expectations, while increasing the number of backward-

looking equations one-for-one. But at the same time it introduces a dependence of the

additional backward-looking equations on both state estimates zt,t
(
≡ Etzt|IAt

)
and esti-
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mates of forward-looking variables, xt,t. This in turn implies that both (B.3) and (B.4) in

general contain such terms.

3. A simple example may help to provide intuition for this iterative stage: suppose two of

the equations in the system are of the form: zt = ρzt + εt, yt = zt+1,t (where both yt and

zt are scalars) i.e., we have one backward-looking (BL) equation and one forward-looking

(FL) equation. However, using the first equation we can write zt+1,t = Etzt+1 = ρzt,t,

hence substituting into the second equation, yt = ρzt,t: i.e., we can use a model-consistent

updating equation. Note, however, a crucial feature: since under II we cannot assume that

zt is directly observable, this updating equation is expressed in terms of the filtered state

estimate zt,t rather than directly in terms of xt. We thus now have two BL equations, but

one of these is expressed in term of a state estimate.

4. The iterative Stage 4 may need to be repeated a finite number of times. In the case of

PI, this is all that is needed, apart from defining what are the t+ 1 variables.

5. For II, we retain the same backward and forward looking variables as in the PI case, but

the solution process is a little more intricate.

The detailed procedure for conversion of (B.1) and (B.2) to the form in (B.3) and (B.4) is

as follows:

Stage 1: SVD and partitions of A0. Obtain the singular value decomposition for the n × n

matrix A0: A0 = U0S0V
T
0 , where U0, V0 are unitary matrices. Assuming that only the first

m values of the diagonal matrix S0 are non-zero (rank(A0) = m < n), we can rewrite this as

A0 = U1S1V
T
1 , where U1 are the first m columns of U0, S1 is the first m ×m block of S0 and

V T
1 are the first m rows of V T

0 . In addition, U2 are the remaining n −m columns of U0, and

V T
2 are the remaining n−m rows of V T

0 .

Stage 2: Extract FL subsystem from (B.3) using S1 and U1. Multiply (B.3) by S−1
1 UT1 , which

yields

V T
1 Yt+1,t + S−1

1 UT1 A1Yt = S−1
1 UT1 A2Yt−1 + S−1

1 UT1 Ψεt (B.5)

We can now define an initial subdivision of Yt into an (initially) m-vector of forward-looking

variables xt = V T
1 Yt, and and an (n − m)-vector of backward-looking variables st = V T

2 Yt

(noting that Yt = V1xt+V2st), and use the fact that I = V V T = V1V
T
1 +V2V

T
2 to rewrite (B.3)

as

xt+1,t + S−1
1 UT1 A1(V1xt + V2st) = S−1

1 UT1 A2(V1xt−1 + V2st−1) + S−1
1 UT1 Ψεt (B.6)

or simply

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (B.7)

where F1 = S−1
1 UT1 A1V1, F2 = S−1

1 UT1 A1V2, F3 = S−1
1 UT1 A2V1, F4 = S−1

1 UT1 A2V2 and F5 =

S−1
1 UT1 Ψ. This is a set of m forward-looking equations. Note that in the iterative Stage 4, the

definition of xt will usually change further, and thus at this stage xt is not usually equal to its

final form in (B.3).
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Stage 3: Extract BL subsystem from (B.3) using U2. Multiply B.3 by UT2 which yields

UT2 A1Yt = UT2 A2Yt−1 + UT2 Ψεt (B.8)

which can be rewritten as

UT2 A1(V1xt + V2st) = UT2 A2(V1xt−1 + V2st−1) + UT2 Ψεt (B.9)

or more simply

C1xt + C2st = C3xt−1 + C4st−1 + C5εt (B.10)

where C1 = UT2 A1V1, C2 = UT2 A1V2, C3 = UT2 A2V1, C4 = UT2 A2V2 and C5 = UT2 Ψ. This is a

set of n−m backward-looking equations.

If C2 is invertible then it is straightforward to multiply (B.3) by C−1
2 , and go straight to

Stage 5. However if C2 is not invertible we need to proceed to the next (iterative) stage.

Stage 4: Iterative transformation of FL equations using model-consistent updating. In this it-

erative stage we write (B.7) and (B.10) in the more general form

xt+1,t + F1xt + F2st = F3xt−1 + F4st−1 + F5εt (B.11)

C1xt + C2st +G1xt,t +G2st,t = C3xt−1 + C4st−1 + C5εt (B.12)

where by comparison of (B.12) with (B.10) we have introduced two new matrices, G1 and G2

that must be zero in the first stage of iteration. However, at the end of the first iteration of this

stage we shall increase the dimension of st, and reduce the dimension of xt one-for-one, which

will require us to re-define all the matrices in (B.11) and (B.12), such that, from the second

iteration onwards, G1 and G2 will be non-zero. The whole of Stage 4 may then need to be

iterated a finite number of times.

First find, a matrix J2 such that JT2 (C2+G2)=0, by using the SVD of C2+G2 (noting that

in the first iterative stage, G2 = 0) Then take forward expectations of (B.12) and pre-multiply

by JT2 to yield

JT2 (C1 +G1)xt+1,t = JT2 C3xt,t + JT2 C4st,t (B.13)

Then reduce the number of forward-looking variables by substituting for xt+1,t from (B.11). In

addition find a matrix Q that has the same number of columns as JT2 (C1+G1) and is made up

of rows that are orthogonal to it. Then we define the following subdivision of xt[
x̄t

x̂t

]
=

[
Q

JT2 (C1 +G1)

]
xt xt =M1x̄t +Q2x̂t (B.14)

where [Q1 Q2] =

[
Q

JT2 (C1 +G1)

]−1

From the substitution of xt+1,t into (B.13), we can

then rewrite the system in terms of a new m-vector of forward-looking variables x̄t, where
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m =rank(C2 +G2) ≤ m, and n−m backward-looking variables (st, x̂t)

x̄t+1,t +QF1Q1x̄t + [QF2 QF1Q2]

[
st

x̂t

]
(B.15)

= QF3Q1x̄t−1 + [QF4 QF3Q2]

[
st−1

x̂t−1

]
+QF5εt

[
C1Q1

JT2 (C1 +G1)F1Q1

]
x̄t +

[
C2 C1Q2

JT2 (C1 +G1)F2 JT2 (C1 +G1)F1Q2

][
st

x̂t

]
(B.16)

+

[
G1Q1

JT2 C3Q1

]
x̄t,t +

[
G2 G1Q2

JT2 C4 JT2 C3Q2

][
st,t

x̂t,t

]

=

[
C3Q1

JT2 (C1 +G1)F3Q1

]
x̄t−1 +

[
C4 C3Q2

JT2 (C1 +G1)F4 JT2 (C1 +G1)F3Q2

][
st−1

x̂t−1

]

+

[
C5

JT2 (C1 +G1)F5

]
εt

The number of forward-looking states has now usually decreased from m to m ≤ m; while the

number of backward-looking states s̄t =

[
st

x̂t

]
has increased by the same amount. In addition

the relationship Yt = V1xt + V2st has changed to

Yt = V1Q1x̄t +
[
V2 V1Q2

]
s̄t (B.17)

Finally, we redefine xt = xt, st = st. Having done so, the system in (B.15) and (B.16) is now of

the form of (B.11) and (B.12), subject to an appropriate redefinition of matrices. Thus, from

(B.16), for G1, and G2, for example, we have an iterative scheme whereby, in the (i+ 1)th

iteration,

Gi+1
1 =

[
Gi1Q

i
1(

J i2
)T
Ci3Q

i
1

]
; Gi+1

2 =

[
Gi2 Gi1Q

i
2(

J i2
)T
Ci4

(
J i2
)T
Ci3Q

i
2

]

where, e.g., Gi1 is the value of G1 in the ith iteration, and G1
1 = 0, G1

2 = 0.

Repeat this stage until C2 +G2 is of full rank.

Proof of Theorem 1 for Perfect Information. In the PI case, the form (B.11), (B.12) with

st = st,t, xt = xt,t is generated after a finite number of iterations of Stage 3, where the number

of iterations cannot exceed the number of variables. The forward looking variables are now xt

and the backward looking variables are st and xt−1, and the system can be set up in Blanchard-

Kahn form by defining zt+1 =

[
st

xt

]
. The only additional calculation is to invert C2 +G2 to

obtain the equation for st, and to substitute into (B.11).

Proof of Theorem 1 for Imperfect Information. From this point, we eschew the details

of matrix manipulations, as these are much more straightforward to understand conceptually
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compared with those above.

Stage 5: C2 non-singular after Stage 4. First form expectations of (B.12), and invert C2 + G2

to obtain st,t in terms of xt,t, xt−1,t, st−1,t, εt,t. Then substitute this back into (B.12), and invert

C2 to yield an expression for st in terms of the above expected values and also xt, xt−1, st−1, εt.

This can be further substituted into (B.11) to yield an expression for xt+1,t in terms of these

variables and their expectations. Similarly the measurement equations mt = LYt can now be

expressed in terms of all these variables. It follows that if we define zt+1 =


εt+1

st

xt

, then the

system can now be described by (B.3). Note that, since dim (st) + dim (xt) = n, in this final

form, dim (zt) = n+ rank (BB′).

Stage 6: C2 singular after Stage 4. We again start from (B.11) and (B.12), and regard xt as the

forward looking variable and (st, xt−1) as the backward looking variables. Now advance these

equations by changing t to t + k : k = 1, 2, 3, ... and take expectations using information at

time t, implying that Etst+k = Etst+k,t+k. Because C2 +G2 is invertible, we can rewrite these

equations with just xt+k+1,t and st+k,t on the LHS. Then the usual Blanchard-Kahn conditions

for stable and unstable roots imply a saddlepath relationship of the form

xt+k+1,t +N1st+k,t +N2xt+k,t = 0 (B.18)

where [I N1 N2] represents the eigenvectors of the unstable eigenvalues. In particular, this

holds for k = 0, so if we substitute for xt+1,t = −N1st,t − N2xt,t into (B.11), then together

with (B.12) we obtain solutions for xt, st in terms of xt,t, st,t, xt−1, st−1, εt. This is possible,

because we have assumed the system is proper i.e., A1 is invertible50, and any manipulations

of A1 in the previous stages have been simple linear transformations of it to yield the matrices

F1, F2, C1, C2. In addition, when we take expectations of (B.12) at time t, given that C2 +G2

is invertible, we obtain an equation for st,t in terms of xt,t, st−1,t, xt−1,t, εt,t. It therefore follows

that we can write st is terms of these latter variables as well as the variables above (excluding

st,t). The same will be true of the measurements mt = LYt.

At this point, we have expressions for xt and st, without any effect from xt+1,t, so in principle

we could solve the signal processing problem from this point onwards. However for consistency

with the case of C2 nonsingular, we can retrieve the representation of xt+1,t by substituting

for st back into (B.11), and then the system has the same structure as that for the case C2

nonsingular.

50The algorithm can be reworked without too much much difficulty if for example some of the forward looking
equations in (B.1) are of the form S0EtYt+1 = 0.
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Finally, by defining zt+1 =


εt+1

st

xt

, the converted form (B.3) becomes


εt+1

st

xt

xt+1,t

 =


0 0 0 0

P1 G11 G12 G13

0 0 0 I

P3 G31 G32 G33




εt

st−1

xt−1

xt



+


0 0 0 0

FF4 FF3 FF2 FF1

0 0 0 0

FF8 FF7 FF6 FF5




εt,t

st−1,t

xt−1,t

xt,t

+


I

0

0

0

 εt+1 (B.19)

where G13 = −C−1
2 C1, G12 = C−1

2 C3, G11 = C−1
2 C4, P1 = C−1

2 C5, G33 = −F2G13 − F1, G32 =

−F2G12+F3, G31 = −F2G11+F4, P3 = −F2P1+F5, FF1 = −C−1
2 G1+C

−1
2 G2(C2+G2)

−1(C1+

G1), FF2 = −C−1
2 G2(C2 + G2)

−1C3, FF3 = −C−1
2 G2(C2 + G2)

−1C4, FF4 = −C−1
2 G2(C2 +

G2)
−1C5, FF5 = −F2FF1, FF6 = −F2FF2, FF7 = −F2FF3 and FF8 = −F2FF4. The C and

F matrices are the reduction system matrices in (B.15) and (B.16) in the form of (B.11) and

(B.12) (i.e., the iterative procedure that ensures invertibility to be achieved).

The measurements mA
t = LYt can be written in terms of the states as mA

t = L(V1xt+V2st),

where V1, V2 have been updated by (B.17) through the same reduction procedure as above.

Using (B.19), we show that mA
t can be rewritten as

mA
t =

[
LV2P1 LV2G11 LV2G12 LV1 + LV2G13

]


εt

st−1

xt−1

xt



+
[
LV2FF4 LV2FF3 LV2FF2 LV2FF1

]


εt,t

st−1,t

xt−1,t

xt,t

 (B.20)

So the observations (B.20) can now be cast into the form in (B.4)

mA
t =

[
M1 M2

] [ zt

xt

]
+
[
M3 M4

] [ zt,t

xt,t

]

whereM1 = [LV2P1 LV2G11 LV2G12] andM2 = LV1+LV2G13. Similarly,M3 = [LV2FF4 LV2FF3 LV2FF2]

and M4 = LV2FF1. Thus the set-up is as required, with the vector of predetermined variables

given by [ε′t s
′
t−1 x

′
t−1]

′, and the vector of jump variables given by xt.

This completes the proof by construction for II.

Example B.1 (Example of Stage 6 Being Needed for Imperfect Information). Suppose that at
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the end of Stage 4, there is a system in scalar processes xt and st,

xt+1,t + αxt + st = βst−1 + εt xt − xt,t + st,t = γst−1 (B.21)

It is clear from examining these equations that they cannot be manipulated into BK form

directly. However, if we now advance these equations by k periods and take expectations

subject to It, one obtains two equations relating xt+k+1,t, st+k,t to xt+k,t, st+k−1,t. Since this is

true for all k ≥ 1, and provided there is exactly one unstable eigenvalue corresponding to these

dynamic relationships, it follows that there must be an expectational saddlepath relationship

xt+1,t = −nst,t. Substituting this into the first of the above equations allows us to solve in

particular for st in terms of xt, st,t, st−1, εt; from the second equation we can solve for st,t in

terms of st−1,t, so that we can replace the second equation by an equation for st in terms of

xt, st−1,t, st−1, εt. Redefining zt+1 = st, it is now straightforward to obtain the BK form for the

first equation and the new second equation.

B.2 Proof of Theorem 2

We conjecture that if a finite state solution to the aggregate variables zt exists, then it will

take the same structural form as that of the II-RA solution, with one difference: that a

representation needs to be found for the matrix F or to be more precise, for the matrix

Q = F − FPAE′(EPAE′)−1E. The representation of Q for the II-HA case provides the proof

of the theorem.

In order to distinguish the II-HA solution from the II-RA solution we replace the prediction

error z̃t and forecast zt,t−1 by z1t, z2t respectively.
51 Initially for simplicity we assume that

there are no measurements directly dependent on aggregate jump variables xt. This means that

in the notation of (21) and (27) we have J = E = M1, which we refer to as E. It follows that

observations mA
t of the aggregate variables can be rewritten as

mA
t = EPAJ ′(JPAJ ′)−1Jz1t + Ez2t = EPAE′(EPAE′)−1Ez1t + Ez2t = E(z1t + z2t) (B.22)

Since we assume that current aggregate shocks affect aggregate observations with their in-

put/output relationship being full rank, it follows that we can re-normalize the observations as

mA
t = ϖt + Syt, so that E = [I S].

We also introduce the saddle path relationship corresponding to (B.23):

[
Na Ny I

]
R 0 0

A21 + I1a A22 + I1y A23

A31 +HaR+Hy(A21 + I1a) + I2a A32 +Hy(A22 + I1y) + I2y A33 +HyA23


= Λ

[
Na Ny I

]
(B.23)

where H = [Ha Hy], I1 = [I1a I1y], I2 = [I2a I2y], and denote N = [Na Ny]. From now on, in

51Although they play precisely the same role, in the proof, we need to calculate prediction errors and forcasts
of each, meaning that the use of a double˜could be confusing.
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order to reduce notation, we drop all terms in I1, I2; it is straightforward to show that the final

representation of the HA solution at the end of the proof takes an identical form to that which

includes these terms (and all that is needed to modify it is to use the saddle path relationship

from (B.23) above that involves I1, I2).

We define the stable matrix A, which represents the dynamics of the saddle path solution

in the PI case, as

A =

[
R 0

A21 −A23Na A22 −A23Ny

]
(B.24)

From the perspective of agent i, it follows after assuming that Ei,txt+1 = −NEi,tzt+1 (to be

verified later), and substituting for Ei,tzt+1 that the system can be written in the form below,

with zt = z1t + z2t
52:

εi,t+1

z1,t+1

z2,t+1

yi,t+1

Ei,txi,t+1


=



0 0 0 0 0

0 Q 0 0 0

0 APAE′(EPAE′)−1E A 0 0

A21 [A21 0] [A21 0] A22 A23

W−1A31 W−1([A31 0] +Q1) W−1([A31 0] +Q2) W−1A32 W−1A33





εi,t

z1t

z2t

yi,t

xi,t



+



0

B

0

0

0


εt+1 +



I

0

0

0

0


εi,t+1 (B.25)

where

Q1 = (H + (I −W )N)APAE′(EPAE′)−1E Q2 = (H + (I −W )N)A (B.26)

and PA satisfies the Riccati equation

PA = QPAQ′ +BB′ B′ = [I 0] (B.27)

Since Q now corresponds to F − FPAE′(EPAE′)−1E, an additional constraint on Q is that

QPAE′ = 0. For the moment, we impose this condition, but later we verify that our represen-

tation below of Q satisfies this.

Note that we can now write the measurements of agent i as

[
mA
t

mA
i,t

]
=

 0 E E 0 0

I
[
I 0

] [
I 0

]
0 0




εi,t

z1t

z2t

yi,t

xi,t


(B.28)

52The states zi,t, z2t play the same role as zt,t−1, z̃t in the earlier II solution, because in this limiting case the
observation mit provides no information about zt.
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The saddlepath relationship for this system corresponds to the row eigenvectors [Nεi N1 N2 Nyi I]

of the unstable eigenvalues of the square matrix in (B.25). After some effort we can show that

N1P
AE′ = N2P

AE′ N2 = [Na Ny −Nyi ] (B.29)

where Nyi is obtained from two of these eigenvector equations:

NyiA22 +W−1A32 = ΘNyi NyiA23 +W−1A33 = Θ (B.30)

where Θ is a square matrix whose eigenvalues are the unstable ones of the saddlepath. Thus

for the HA problem, there are two saddle path conditions required for existence of a solution:

the standard one, and this additional one. These precisely mirror the two Rondina and Walker

(2021) saddle path conditions. In addition, we have

ΘNεi = NyiA21 +W−1A31 (B.31)

Since equations (B.29) to (B.31) are independent of the filtering problem, the solution for N

that results must, as stated in Theorem 2, be identical to the solution under perfect information,

i.e., as in the PI-HA case.

B.2.1 Solving for yi,t

(B.25) and (B.28) are now in the form of (15) and (16), so we can now invoke the II results

(22)–(23) in order to solve for yi,t.

Since mA
i,t = εi,t+ [I 0](z1t+ z2t) is observed by agent i, and by assumption yi,t and xi,t are

known to agent i, it follows that there is no prediction error in any of these. In addition, since

we are in the limiting case Σ → ∞, which means that mA
i,t can provide no information on z1t

or z2t, it is easy to show that the Riccati matrix for the agent’s information problem is given

by P̄A = limΣ→∞diag(Σ, P
A, 0, 0), and therefore the F -matrix for this problem is given by

F̄ =


0 0 0 0

0 Q 0 0

0 APAE′(EPAE′)−1E A 0

X [X 0]−A23A
−1
33 Q1 [X 0]−A23A

−1
33 Q2 A22 −A23A

−1
33 A32

 (B.32)

where X = A21 −A23A
−1
33 A31. Similarly we obtain

Ā =


0 0 0 0

0 Q 0 0

0 APAE′(EPAE′)−1E A 0

A21 −A23Nεi [A21 0]−A23N1 [A21 0]−A23N2 A22 −A23Nyi

 (B.33)
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Defining Ē =

 0 E E 0

I
[
I 0

] [
I 0

]
0

, we can show after some effort that as Σ → ∞

P̄AĒ′(ĒP̄AĒ′)−1Ē =


I [I 0] (I − PAE′(EPAE′)−1E) [I 0] (I − PAE′(EPAE′)−1E) 0

0 PAE′(EPAE′)−1E PAE′(EPAE′)−1E 0

0 0 0 0

0 0 0 0


(B.34)

Hence

F̄ P̄AĒ′(ĒP̄AĒ′)−1Ē =


0 0 0 0

0 0 0 0

0 APAE′(EPAE′)−1E APAE′(EPAE′)−1E 0

X Z Z 0

 (B.35)

where Z = [X 0]−A23A
−1
33 HAP

AE′(EPAE′)−1E. Once one has calculated F̄−F̄ P̄AĒ′(ĒP̄AĒ′)−1Ē,

it becomes clear that z̃1t = z1t, z̃2t = 0, ỹi,t = 0 (where, in general, w̃t denotes wt − wt,t−1).

ĀP̄AĒ′(ĒP̄AĒ′)−1Ē =


0 0 0 0

0 0 0 0

0 APAE′(EPAE′)−1E APAE′(EPAE′)−1E 0

A21 −A23Nεi Y Y 0


(B.36)

where Y = [A21 0]− [A23Nεi 0] (I−PAE′(EPAE′)−1E)−A23N2P
AE′(EPAE′)−1E.53 Follow-

ing on from our remark about z̃1t, z̃2t, ỹi,t, it is clear that z1t,t−1 = 0, z2t,t−1 = z2t, yit,t−1 = yi,t.

Noting that
∫
εi,tdi = 0, we can therefore summarize the system as follows:

z1,t+1 = Qz1t +Bεt+1

z2t+1 = APAE′(EPAE′)−1Ez1t +Az2t

yi,t+1 = Y z1t + ([A21 0]−A23N2)z2t + (A22 −A23Nyi)yi,t + (A21 −A23Nεi)εi,t

yt+1 = Y z1t + ([A21 0]−A23N2)z2t + (A22 −A23Nyi)yt

B.2.2 Requirements for Initial Conjecture to be Valid

The objective now is to show that we can pick a representation of the matrix Q such that

ȳt = [0 I](z̃t + z̄t) (B.37)

We first note that Q cannot be a full rank matrix since QPAE′ = 0. Since the number of

measurements is equal to the number of shocks by assumption, it follows that the maximum

53We have utilized the earlier result that N1P
AE′ = N2P

AE′.
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rank of Q is the number of states in z1t other than the shocks, nzm. We can therefore write

Q = UV ′ =

[
U1

U2

]
[V ′

1 V ′
2 ] (B.38)

where the number of columns of U and number of rows of V are equal to nzm. We now address

whether [0 I](z1,t+1 + z2,t+1)− yt+1 is solely dependent on its previous value, and if this is the

case, it follows that [0 I](z1t + z2t) = yt in equilibrium.

[0 I](z1,t+1 + z2,t+1) − yt+1

= U2[V
′
1 V ′

2 ]z1t + [0 I]APAE′(EPAE′)−1Ez1t + [0 I]Az2t

− ([A21 0]− [A23Nεi 0] (I − PAE′(EPAE′)−1E)−A23N2P
AE′(EPAE′)−1E)z1t

− (A22 −A23Nyi)yt − ([A21 0]−A23N2)z2t

= U2[V
′
1 V ′

2 ]z̃t + [A21 −A23Na A22 −A23Ny](P
AE′(EPAE′)−1Ez1t + z2t)

− ([A21 0]− [A23Nεi 0] (I − PAE′(EPAE′)−1E))z1t

+ [A23Na A23(Ny −Nyi)]P
AE′(EPAE′)−1Ez1t

− [A21 0]z2t − (A22 −A23Nyi)yt + [A23Na A23(Ny −Nyi)]z2t

+ [A21 −A23Na A22 −A23Ny]z2t

= (A22 −A23Nyi)([0 I](z1t + z2t)− yt)

+ U2[V
′
1 V ′

2 ]z1t − [A21 −A23Nεi A22 −A23Nyi ](I − PAE′(EPAE′)−1E)z1t(B.39)

Since (A22 −A23Nyi) is a stable matrix by assumption, the theorem is proven if

U2[V
′
1 V ′

2 ] = [A21 +A23Nεi A22 −A23Nyi ](I − PAE′(EPAE′)−1E).

If RA-II is invertible, it is straightforward to show that this is equivalent to

A−APAE′(EPAE′)−1E being a stable matrix where PA = diag(I, 0). In addition, this

solution must correspond to UV ′ = 0, which implies from (B25) that z1t =

[
εt

0

]
.

In addition, with PA = diag(I, 0), it follows that

U2[V
′
1 V ′

2 ]z1t − [A21 −A23Nεi A22 −A23Nyi ](I − PAE′(EPAE′)−1E)z1t

= 0− [A21 −A23Nεi A22 −A23Nyi ]

[
0 −S
0 I

][
εt

0

]
= 0

implying that this is indeed the RA-PI solution.

B.2.3 Expressions for Q,U2[V
′
1 V ′

2 ] and [0 A22 −A23Nyi ](I − PAE′(EPAE′)−1E

To find a representation of Q, we exploit the following:

1. The Riccati matrix PA also satisfies the Lyapunov equation PA = QPAQ′ +BB′;

2. QPAE′ = 0 (as we noted earlier);
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3. Denoting the first subvector of each of the states z1t, z2t by a1t, a2t, so that a1t+ a2t = at,

represents the shocks, it must follow that a1,t+1+a2,t+1 must exactly equal R(a1t+a2t)+

εt+1;

4. Under PI, we assumed that the system from the perspective of the econometrician is

invertible. Given that the first subvectors above represent the shocks, it follows that the

first m columns E1 of the observation matrix E = [E1 E2] must be full rank. Since any

linear combination of the observables will produce the same solution of the Riccati matrix,

for ease of exposition we normalize to E = [I S] where S = E−1
1 E2.

An additional useful constraint on this setup is to note that the eigenvalues of Q are given by

a number of zeros equal to the number of shocks, and in addition the eigenvalues of the matrix

Λ = V ′U = V ′
1U1 + V ′

2U2, and it is this matrix that will give us all the values U1, U2, V
′
1 , V

′
2 .

These eigenvalues will be associated with Blaschke factors that are at the heart of the solution.

We first note that the Riccati matrix satisfies PA = UV ′PAV U ′ + BB′; multiplying this

through by V ′ on the left and V on the right yields V ′PAV = V ′U(V ′PAV )U ′V + V ′BB′V , so

defining Z = V ′PAV and recalling that B′ = [I 0], we can write this as

Z = ΛZΛ′ + V ′
1V1 (B.40)

This eventually leads to the following:

U1 = RS (B.41)

Z = ΛZΛ′ + (ΛZS′R′ − ZS′)(RSZΛ′ − SZ) (B.42)

U2ZΛ
′ = −Z (B.43)

V ′
1 = −ΛZS′R′ + ZS′ (B.44)

V ′
2 = V ′

1S − I (B.45)

In addition, we note that the Riccati matrix PA is given by

PA = UV ′PAV U ′ +BB′ = UZU ′ +BB′ =

[
U1

U2

]
Z[U ′

1 U ′
2] +

[
I 0

0 0

]
(B.46)

Hence, as required

QPAE′ = UV ′PAE′ = U(ΛZ(U ′
1 + U ′

2S
′) + V ′

1) = U(ΛZS′R′ − ZS′ + V ′
1) = 0 (B.47)

A crucial point to note is that a potential solution of (B.42) is Z = 0 and PA =

[
I 0

0 0

]
; this

is relevant for the PMIC for agents, and at the final stage of the proof.

We can see from the above that the matrices U2, V
′
1 , V

′
2 all depend on Z, with the latter

dependent on the choice of matrix Λ. From this, it is easy to show that

EPAE′ = I + V1Λ
−TZ−1Λ−1V ′

1 (B.48)
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and using (B.40), we can further show that

(EPAE′)−1 = I − V1Z
−1V ′

1 (B.49)

Further calculation gives

PAE′ =

[
I

0

]
+

[
−RS

ZΛ−TZ−1

]
Λ−1V ′

1 (B.50)

and hence

I − PAE′(EPAE′)−1E =

[
SV ′

1 −S(I − V ′
1S)

−V ′
1 I − V ′

1S

]
=

[
S

−I

] [
V ′
1 − I + V ′

1S
]

(B.51)

and

[A21 −A23Nεi A22 −A23Nyi ](I − PAE′(EPAE′)−1E

= ((A21 +A23Nεi)S − (A22 −A23Nyi)) [V
′
1 − I + V ′

1S] (B.52)

Noting that U2[V
′
1 V ′

2 ] = U2[V
′
1 − I + V ′

1S], it immediately follows that [0 I](z̃t + z̄t) = ȳt if

U2 = (A21 −A23Nεi)S − (A22 −A23Nyi) (B.53)

This analytic expression for U2 then generates all the elements of Q that provide the equilibrium

dynamics of the aggregate variables.

To actually obtain V1 and V2, we can rewrite (B.42) by pre and postmultiplying it by Z,

and noting that U2 = −ZΛ−TZ−1:

Z−1 = U−T
2 Z−1U−1

2 + (U−T
2 S′R′ + S′)(RSU−1

2 + S) (B.54)

This Lyapunov equation for Z−1 yields Λ via U2, and hence V1 and V2. Clearly this is not a

general solution as it is only valid when U−1
2 is a stable matrix, so we need some further steps.

If all the eigenvalues of U2 are unstable then it is straightforward to check that

UV ′is indeed equal to F (I − PAE′(EPAE′)−1E), where F is as given in the theorem

statement.

B.2.4 PMIC for Agent i

We can now calculate the PMIC defining

Â =


0 0 0 0

0 Q 0 0

0 APAE′(EPAE′)−1E A 0

A21 −A23Nεi Y [A21 0]−A23N2 A22 −A23Nyi

 (B.55)
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B̂ =



I 0

0

[
I

0

]
0 0

0 0


Ê =

 I
[
I 0

] [
I 0

]
0

0
[
I S

] [
I S

]
0

 (B.56)

After some tedious algebra we can show that the PMIC matrix Â − ÂB̂(ÊB̂)−1Ê is block

triangular, with diagonal blocks given by

Q

[
0 −S
0 I

]
, A−APAE′(EPAE′)−1E, A22 −A23Nyi (B.57)

The last matrix is stable if, as we assumed above, there is saddle path stability for agent i.

Consider now the first matrix

Q

[
0 −S
0 I

]
= UV ′

[
0 −S
0 I

]
=

[
U1

U2

] [
0 −I

]
=

[
0 −U1

0 −U2

]
(B.58)

So the PMIC for the agent requires U2 = (A21 − A23Nεi)S − (A22 − A23Nyi) to be a stable

matrix. It is easy to see that this is consistent with Z = 0, PA = BB′, meaning that the second

matrix of (B.57) is equal to A−AB(EB)−1E, which is the earlier form of the PMIC in the RA

case.

B.2.5 Solution When U2 Has Both Stable and Unstable Eigenvalues

An obvious conjecture is that once U2 is diagonalized into stable and unstable blocks, then the

stable block will be associated with a transformation of Z equal to 0, while the unstable block

will generate a solution for some transformation of Z similar to (B.54); we show that this is

indeed the case.

Assume therefore that we diagonalize U2 as

U2 = T−1

[
U1
2 0

0 U2
2

]
T (B.59)

where U2
1 has all eigenvalues greater than 1 in modulus, and U2

2 all less than 1. Then (B.43)

can be rewritten as

− TZT T =

[
U1
2 0

0 U2
2

]
TZT TT−TΛTT T (B.60)

Assume that TZT T = diag(Z1, 0). For (B.60) to be consistent with this, we require

T−TΛTT T =

[
ΛT11 0

ΛT21 ΛT22

]
and − Z1 = U1

2Z1Λ
T
11 (B.61)
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A simple calculation then shows that (B.42) reduces to

Z1 = Λ11Z1Λ
T
11 + (Λ11Z1X

′
1 − Z1Y

′
1)(X1Z1Λ11 − Y1Z1) (B.62)

where X1, Y1 are defined conformably via (RST−1)T = [X ′
1 X ′

2], (ST
−1)T = [Y ′

1 Y ′
2 ]. Multi-

plying through on both sides by Z−1
1 , we obtain an equation analogous to (B.54):

Z−1
1 = (U1

2 )
−TZ−1

1 (U1
2 )

−1 + ((U1
2 )

−TXT
1 + Y T

1 )(X1(U
1
2 )

−1 + Y1) (B.63)

Finally, compute Z = T−1diag(Z1, 0)T
−T , and PA = UZU ′ + BB′. Note that the linearity

of the solution for Z1 (given T ) implies that its solution is unique. Furthermore, although the

choice of matrix T is non-unique, it is trivial to demonstrate that the matrices UV ′ and PA

are independent of which of the T matrices are used to diagonalize U2, so that they in turn are

unique. It follows that in this case the HA-II(∞) solution is the same as RA-PI.

B.2.6 Summary of Proof

To summarize, the solution is obtained as follows:

1. Find the eigenvectors [Nεi N1 N2 Nyi I] of the unstable eigenvalues of the square matrix

in (B.25);

2. Compute U2 as in (B.53);

3. If U2 is a stable matrix then PA = BB′, and the solution is equivalent to that under PI;

4. Otherwise:

(a) If all eigenvalues of U2 are unstable, compute the solution Z−1 to the Lyapunov

equation (B.54);

(b) If there are stable and unstable eigenvalues, diagonalize U2, and generate the solution

as in the previous subsection;

5. Compute PA = UZU ′ +BB′;

6. Compute Q via (B.38), noting that in the case of U2 having mixed stable and unstable

eigenvalues that V1 = [(X1(U
1
2 )

−1 + Y1)Z1 0]T−T .

We finally note that all of this analysis leads to a saddle path that represents a linear relationship

between xi,t and εi,t, z1t, z2t, yi,t, which in turn implies a linear relationship between xt and

z1t, z2t. But consistency with the saddle path under PI implies that Ei,txt+1 = −NEi,tzt+1 =

−NEi,t(z1,t+1 + z2,t+1) = 0−Nz2,t+1, which was our initial assumption.

B.2.7 Connection Between II-RA and II-HA (Limiting Case) Solutions

In Theorem 2 , UV ′ plays the role of F − FPAE′(EPAE′)−1E in Theorem 3. Let us therefore

write

F − FPAE′(EPAE′)−1E = UV ′ =

[
RS

U2

]
[V ′

1 V ′
1S − I] (B.64)
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We also know from (B.51) that

I − PAE′(EPAE′)−1E =

[
S

−I

] [
V ′
1 V ′

1S − I
]

(B.65)

Writing

F =

[
R 0

X Y

]
(B.66)

implies that U2 = XS − Y , but from (B.53) we have U2 = (A21 − A23Nεi)S − (A22 − A23Nyi),

implying that X = A21−A23Nεi , Y = A22−A23Nyi , where Nεi , Nyi are defined via the agent’s

saddlepath conditions (B.29)–(B.31).

B.2.8 Application to the GW Model of (1)–(5)

For this example we have S = κ1
κ1+κ2

− 1, A21 = κ1 + κ2, A22 = κ1, A23 = 1− A21, A31 = A32 =

0, A33 = 1. It follows that Θ = κ1, Nyi =
κ1−1

1−κ1−κ2 , Nεi =
1− 1

κ1
1

κ1+κ2
−1

. Hence U2 = −κ1+κ2
κ1

, and

therefore Λ = κ1
κ1+κ2

. The latter leads to the Blaschke factor in (C.89). In addition, recalling

that κ1 = 1
β , κ2 = 1−α

αβ (1 − β(1 − δ)), for the Rondina and Walker (2021) case there is full

depreciation of the capital stock. Therefore using δ = 1, it follows that Λ = α.

B.2.9 Proof with Observations dependent on Aggregate Jump Variables

We now assume that measurements are given by mA
t = M1zt + M2xt, which leads to the

conjecture that mA
t = EPAJ ′(JPAJ ′)−1Jz1t + Ez2t, where

J =M1 −M2A
−1
33 A32 E =M1 −M2N (B.67)

The dynamic equations for z1t, z2t are given as in (B.25), but with E replaced by J , from which

it follows that in lag operator form we can derive the expression

mA
t = E(I −AL)−1PAJ ′(JPAJ ′)−1J(I −QL)−1Bεt (B.68)

The full rank input/output requirement for contemporaneous shocks then implies that JB is of

full rank; since JB is square and B′ = [I 0], it follows that if we write J = [J1 J2] conformably

with B′ then J1 is full rank. After some effort we can then show that the only change to the

proof above is in the definition of the matrix S, which is now given as S = J−1
1 J2 with the

expression for Y in (B.36) having E replaced by J throughout.
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B.3 Proof of Theorem 3

Proof. Using the expressions (38)–(37) for II, and the invertibility requirement that Ã −
ÃB̃(ẼB̃)−1Ẽ has stable eigenvalues, we calculate the latter as the matrix[

A−APAJ ′(EPAJ ′)−1E 0

−F (I − PAJ ′(JPAJ ′)−1J)(JB)−1JPAJ ′(EPAJ ′)−1E F (I −B(JB)−1J)

]
(B.69)

If F (I−B(JB)−1J) has eigenvalues outside the unit circle, it immediately follows that II is not

E-invertible. If its the eigenvalues are inside the unit circle, it follows that the solution to (28) is

PA = BB′; this is because the Convergence Condition for PA is that F −FPAJ ′(JPAJ ′)−1J =

F (I − B(JB)−1J) is a stable matrix. Furthermore it follows that A − APAJ ′(EPAJ ′)−1E =

A(I −B(EB)−1E), so that (B.69) is a stable matrix as required for invertibility.

To show that invertibility implies that II and PI are equivalent, we note that (23) now

implies that z̃t = Bεt+(F (I−B(JB)−1J))tz̃0, which in dynamic equilibrium implies z̃t = Bεt.

This implies that zt+1,t = Azt,t−1+ABεt, and hence that zt+1 = z̃t+1+zt+1,t = Azt,t−1+ABεt+

Bεt+1 = Azt+Bεt+1 as in the PI case. In addition, from (25), mA
t = Ezt,t−1 +Ez̃t = Ezt, also

as in the PI case. If F (I −B(JB)−1J) is not a stable matrix, then PA ̸= BB′, and the overall

dynamics of (22)-(25) are of a higher dimension than under PI.

Finally, for the HA(∞) case, we have JB = EB = I, so clearly invertible, and given the

representation of F the proof of Theorem 2 it follows that

F − FB(EB)−1E =

[
0 −RS
0 (A21 −A23Nεi)S − (A22 −A23Nyi)

]
(B.70)

This is evidently a stable matrix provided that the A-invertibility condition holds for HA(∞)

B.4 Proof of Corollary 3.1

Proof. Writing (25) in terms of lagged state variables and shocks yields a coefficient matrix on

the latter given by EPAJ ′(JPAJ ′)−1JB, and the rank of this is ≤ rank(JB) ≤ rank(J). This

immediately implies that the system is E-non-invertible.

B.5 Proof of Corollary 3.2

Proof.

mU
t =

[
UM1 UM2

] [ zt

xt

]
+
[
UM3 UM4

] [ Etzt
Etxt

]

=
[
UM2G

−1
22 G21 UM2

] [ zt

xt

]
+
[
UM3 UM4

] [ Etzt
Etxt

]

= UM2G
−1
22

(
Etxt+1 −

[
H21 H22

] [ Etzt
Etxt

])
+
[
UM3 UM4

] [ Etzt
Etxt

]
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(B.71)

where the last expression comes from substituting from (15). Noting that Etxt+1 = −NEtzt+1,

and that Etzt+1 is dependent on Etzt and Etxt, it follows that mU
t is solely dependent on these

too. In other words, mU
t cannot be affected by current shocks εt, and is redundant information.

B.6 Proof of Theorem 4

In order to show the existence of Blaschke factors, we need to show that a subset of the eigen-

values of the matrix for the PMIC condition are the inverses of the eigenvalues of those of the

system dynamics.

Recall from the proof of Theorem 2 that the matrices defining the aggregate system under

II-HA are given by

Ê = [E E] Â =

[
UV ′ 0

APE′(EPE′)−1E A

]
B̂ =

[
B

0

]
(B.72)

We first note that the eigenvalues of Â are precisely 0, those of V ′U = Λ and those of A.

In addition, inverting the system to describe shocks in terms of observables yields the PMIC

matrix

Â− ÂB̂(ÊB̂)−1Ê =

[
UV ′ 0

APE′(EPE′)−1E A

]
−

[
UV ′B

APE′(EPE′)−1EB

]
(EB)−1[E E]

=

[
UV ′ − UV ′B(EB)−1E −UV ′B(EB)−1E

0 A−APE′(EPE′)−1E

]
(B.73)

Again, from the proof of Theorem 2, we have E = [I S], B′ = [I 0] (so EB = I) and

V ′
2 − V ′

1S = −I. It therefore follows that

UV ′ − UV ′B(EB)−1E =

[
0 −U1

0 −U2

]
(B.74)

Finally, from the proof of Theorem 2, we also know that −U2 = ZΛ−TZ−1, which means that

the eigenvalues of −U2 are the inverses of those of Λ. Hence the aggregate system has Blaschke

factors.

B.7 Proof of Theorem 5

Proof. We first solve the steady state Riccati equation (B.27) corresponding to the matrices

(38)–(40). It is easy to verify that P̃E = diag(M,PA) where M = Z − PAJ ′(JPAJ ′)−1JPA

and Z satisfies

Z = AZA′ −AZE′(EZE′)−1EZA′ + PAJ ′(JPAJ ′)−1JPA (B.75)
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For the innovations representation, we use the notation st = [s′1t s
′
2t]

′, rather than st = [z′t,t−1 z̃
′
t]
′

as the notation for one-step ahead predictors of the latter will lead to confusion. We can then

show that the steady state innovations representation corresponding to (A.15) is given by

Etst+1 =

[
A APAJ ′(JPAJ ′)−1J

0 F − FPAJ ′(JPAJ ′)−1J

]
Et−1st+

[
AZE′(EZE′)−1

0

]
et et = mE

t −ẼEt−1st

(B.76)

or more succinctly

Ets1,t+1 = AEt−1s1,t +AZE′(EZE′)−1et et = mE
t − EEt−1s1t (B.77)

The corresponding VARMA representation arises from defining ξt = Et−1s1t +ZE′(EZE′)−1et

which yields

ξt+1 = Aξt + ZE′(EZE′)−1et+1 mE
t = Eξt et ∼ N(0, EZE′) (B.78)

The final step follows from comparing (B.78) with (22)–(25); clearly the dynamics of the RE

saddle-path solution explained by the innovations process et are of smaller dimension that the

dynamics yielding the impulse responses.

B.8 Proof of Corollary 5.1

Proof. From the proof of Theorem 2 we have seen that the MA roots of the VARMA process

include the eigenvalues of F (I − B(JB)−1J), while from (22)–(25), the AR roots include the

eigenvalues of F (I − PAJ ′(JPAJ ′)−1J). By Corollary A.3, it follows that one or more of

these are reciprocals of one another. Hence the transfer function from shocks to observables

incorporates at least one Blaschke factor. It follows that IRFs of structural shocks from the

latter cannot be linear combinations of IRFs from VAR residuals, which will only mimic the

IRFs from the innovations process.

B.9 Proof of Corollary 5.2

Proof. The state-space equations describing the system, (22)–(25), will be unchanged, as these

depend on the measurements made by the agents. However, if the information set of the

econometrician is a subset of that of the agents, this means that in the notation of (14), we

have LE = WLA for some matrix W . It then follows that the measurement equation of the

econometrician, following from (25), is given by mt =W (Ezt,t−1+EPD′(DPD′)−1Dz̃t). Thus

the innovations process and the VARMA as shown in the proof of Theorem 4 are changed merely

by replacing E by WE, with the Riccati matrix Z also obtained with the same replacement of

E.
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B.10 Proof of Theorem 7

Proof. Both of these results follow from finding the best fit of a linear combination of structural

shocks and residuals, which can be expressed as

mina,bE(a′ε− b′e)2 s.t. a′a = 1 (B.79)

Given a, one obtains b via standard OLS techniques, and the problem reduces to minimizing

a′FPIa s.t. a′a = 1, with solution a equal to the eigenvector of the minimum eigenvalue of FPI .

C More on the Illustrative Analytical Example

In this section, we provide more detail on the illustrative model first discussed in the Introduc-

tion. In Appendix E.4, we show that the illustrative model is a special case of the full RBC

model considered in Section 6 below.

We first show the derivations of each of the reduced form representations of the single

observable, the rental rate of capital, and then provide more detail on the responses of the

economy to a aggregate technology shock. For this model, given that there is only a single

shock, we are also able to compare the solution for the limiting case of extreme heterogeneity

with intermediate cases, using a solution technique that matches the solution of Rondina &

Walker (2021). We show that the limiting case is both quantitatively similar to intermediate

cases for empirically plausible degrees of heterogeneity, but also provides qualitative insights for

a much wider range of values, even for cases close to heterogeneity.

C.1 The Representative Agent Framework

We can derive a representative agent version of the model the model as set out in equations

(1) to (5) in the Introduction by setting idiosyncratic shocks to zero. The system then has a

state-space form
εa,t+1

kt+1

ct+1,t

 =


0 0 0

κ2 κ1 1− κ1 − κ2

0 0 1 + κ4(κ1 + κ2 − 1)



εa,t

kt

ct



+


0 0 0

0 0 0

−κ4κ2 −κ4κ1 0



εa,t,t

kt,t

ct,t

+


1

0

0

 εa,t+1 (C.80)
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For the II-RA case, we simply assume (without justification) the censored information set which

is the history of the single observable, the rental rate on capital

mA
t = mE

t = [1 − 1 0]


εa,t

kt

ct

 εa,t ∼ N(0, σ2a) (C.81)

where κ4 ≡ (1− β(1− δ)(1− α). Note that observing the rental rate vt = (1− α)(εa,t − kt) is

equivalent to the measurement assumption mA
t = mE

t = εa,t − kt.

Using our earlier notation from the general solution, we obtain (after a little effort for matrix

A)

F =

[
0 0

κ2 κ1

]
J = E = [1 − 1] A =

[
0 0
κ2
κ1
µ µ

]
(C.82)

where µ is the stable eigenvalue of the system.

C.2 The PI-RA Solution

If agents have perfect information it is straightforward to show that the L-operator representa-

tion of the single observable is an ARMA(1,1) process given by

mE
t = mA

t = E(I −AL)−1Bεt =

(
1− (κ1+κ2)µL

κ1

1− µL

)
εa,t (C.83)

By exploiting the properties of the linearization constants and the stable eigenvalue, µ in Ap-

pendix E.6) it can be show that the MA parameter (κ1+κ2)µ
κ1

is non-negative, but, for different

values of the risk aversion parameter σ, it may lie either below or above unity. After substituting

for κ1 and κ2 the condition for fundamentalness is

κ1
(κ1 + κ2)µ

=
1

(1 + (1−α)
α (1− β(1− δ)))µ

≥ 1

⇒ µ ≤ 1

(1 + (1−α)
α (1− β(1− δ)))

(C.84)

The RHS of (C.84) lies in the interval (0, 1) for all δ ∈ [0, 1] so in principle, the PI-RA solution

for both the Rondina and Walker (2021) and GW models can be either fundamental or non-

fundamental. However, it can be shown that µ = µ(σ) where µ′(σ) > 0 for σ > 0 so there

exists a threshold for σ > 0 below which condition (C.84) holds. Figure 8 illustrates this result.

It shows that the condition only holds for σ < 0.5 approximately. For empirically plausible

values of σ, therefore the representation (C.83) will be non-fundamental. This is the basis for

the representation given in (6) with reduced form parameters satisfying (9).
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C.3 The II-RA Solution

Under II, the stable solution to the Ricatti equation is given by PA = σ2adiag(1, (κ1+κ2)
2−1)

and the Kalman gain is given by

PAJ ′(JPAJ ′)−1J =

[
1

(κ1+κ2)2

1
(κ1+κ2)2

− 1

]
[1 − 1] (C.85)

Stability of the solution to the Ricatti equation is given by the stability of

QA = F (I − PAJ ′(JPAJ ′)−1J) =

[
0 0

κ1 + κ2 − 1
κ1+κ2

1
κ1+κ2

]
(C.86)

which is a stable matrix since 1 < (κ1 + κ2).
54

Thus, despite the fact that the PMIC may at least in principle sometimes be satisfied under

PI, the system can never be A-invertible: II does not replicate PI. Hence, from Theorem 3, the

system is not E-invertible.

It is easy to show that the L-operator representation of the interest rate under II is then

given by

mE
t = mA

t = E(I −AL)−1PAJ ′(JPAJ ′)−1J(I −QAL)−1Bεt

=

(
1− µL

(κ1+κ2)κ1

1− µL

)(
1− (κ1 + κ2)L

1− L
(κ1+λ2)

)
εa,t (C.87)

=

(
1− µL

(κ1+λ2)κ1

1− µL

)
et (C.88)

which implies a representation as in (6) with parameters satisfying (8).

C.4 The PI-HA Solution

For the full heterogeneous agent version of the model as set out in equations (1) to (5) in the

introduction, it is straightforward to show that if perfect information is simply provided as an

endowment, the solution for the aggregate economy is identical to the PI-RA case. At the level

of each heterogeneous agent the solution is supplemented by the saddlepath responses to both

the idiosyncratic component in technology, and to each agent’s idiosyncratic capital; but these

responses cancel out in the aggregate.

C.5 The II-HA(∞) Solution

When agents have imperfect, market-consistent information sets, for the general case they ex-

ploit information from the markets they trade in, hence the histories of both the aggregate

observable, the rental rate on capital, and of the local wage. But as heterogeneity becomes

54The alternative solution of the Riccati equation is PA = diag(1, 0) but this is not a stable solution since it
implies that QA = diag(0, κ1), which is an unstable matrix.
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extreme, we apply Theorem 2, so that the solution to any agent’s filtering problem for the ag-

gregate economy takes the same form as for the II-RA case, but with a different F matrix, where

κ1 and κ2 are replaced with values shifted by the saddlepath responses to pure idiosyncratic

shocks. In Appendix B.2.8, we show that this implies that the reduced form ARMA process for

the single observable takes the form

II-HA(∞) : mA
t = mE

t =

(
1− µ1κ1L

(κ1+κ2)

)
(1− µ1L)

(
1− (κ1+κ2)

κ1
L
)

(
1− κ1L

(κ1+κ2)

) εa,t

=

(
1− µ1κ1L

(κ1+κ2)

)
(1− µ1L)

et (C.89)

which again matches the representation in (6) in the Introduction, with parameters satisfying

(7).

D Time Versus Frequency Domain Finite-Space Solution

An important development in the recent literature on diffuse information are finite-space solu-

tions that avoid the high-order beliefs in the famous “beauty contest” models emphasized by

Keynes (1936). Our solution has the same structure as the representative agent solution (see

Theorem 2) a feature Huo and Pedroni (2020) refer to as a ‘single-judge’ outcome of the beauty

contest. It holds for the limiting case of a very general set-up set out in Section 3. Here we

show that for the analytical RBC example our time domain approach yields the same solution

as the frequency domain approach of Rondina and Walker (2021) (henceforth RW) once we

have corrected the minor errors in the RW theorems. Moreover we would emphasize that our

solution method is simpler.

In their notation, the RW model is given by

at+1 = ρat + ϵt+1 (D.1)

ki,t+1 =
1

β
kit + (1− 1

αβ
)cit +

1

αβ
(at + vit) (D.2)

Eitci,t+1 = ci,t +
1

σ
Eitrt+1 (D.3)

rt = (α− 1)kt + at (D.4)

where kt =
∫
µikitdi. Measurements are given by

mt = rt mit = at + vit vit ∼ N(0, v) (D.5)

The model differs from our illustrative example (1)-(5) in two respects: RW assume 100%

depreciation so δ = 1 which implies that the real rate of interest rt equals the rental rate vt.

The other difference is that the technology shock in RW is total factor productivity (TFP) as

oppose to labour productivity in our example.55 In what follows we stick to the simpler case of

55It follows that at in RW becomes (1− α)at and vit becomes (1− α)ϵit in our example, (1)-(5).
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ρ = 0 as in the text.

RW assume that the solution to the problem in lag operator form is given by

rt = (L− λ)G(L)εt ≡ Y (L)εt xit = K(L)εt + V (L)vit (D.6)

where xit is lagged capital stock of the ith firm. In addition aggregate TFP is given by at =

A(L)εt. In the very simple case of TFP being equal to white noise, it follows that A(L) = 1

and

rt = (1− (1− α)LK(L))εt (D.7)

To obtain the solution to xit, RW subtract (D.2) from its forward-looking version, and then

replace Eitci,t+1−ci,t by 1
σEitrt+1. This leads to an equation solely in terms of kit and its forward

leads, or equivalently an equation in xit, its lag and its forward expectation. RW then apply

the Wiener-Kolmogorov formula to this expectation, based on the assumed representation of

the measurements and the representations in (D.6), and substitute into the equation for xit.

As RW point out, A(λ)V (λ) = K(λ), so that in our case we have V (λ) = K(λ). In addition

for our limiting case, as the variance of the idiosyncratic shock → ∞, it follows that τ(λ) = 0

in their equation (A.69), τ(λ) being a signal to noise measure.

The equation involving xit can now be expressed as lag operator expressions multiplying

each of εt and vit, as in their (A.69), respectively as follows:56

αβ[K(L)−K(0)]− αβ (1−λ2)L
λ(1−λL) [V (0)−K(0)]− α(1−ζ)(β−ζ)

ζ LK(L)

+α(1−ζ)(β−ζ)
ζ(1−α)

(1−λ2)L
λ(1−λL) = αL(1 + β − L)K(L)− L (D.8)

αβ[V (L)− V (0)] = αL(1 + β − L)V (L)− L (D.9)

(D.9) can be rewritten as α(L − 1)(L − β)V (L) = αβV (0) − L; potentially this means that

V(L) is represented by an unstable ARMA process unless the term on the RHS also has a factor

(L − β). Thus to avoid this unstable autoregressive root for V (L), αβV (0) − L = 0 at L = β.

This implies that V (0) = 1/α. With this value in place, we can rewrite (D.8) as

α(L− ζ)(L− β

ζ
)K(L) = αβK(0)

[
1− (1−λ2)L

λ(1−λL)

]
− L+ β(1−λ2)L

λ(1−λL)

−α(1−ζ)(β−ζ)
ζ(1−α)

(1−λ2)L
λ(1−λL) (D.10)

Here too K(L) potentially contains an unstable autoregressive root unless the RHS of this

equation also contains a factor (L− ζ); so the RHS must equal zero when L = ζ. This in turn

implies that

K(0) =
λζ(1− λζ)

αβ(λ− ζ)
− (1− λ2)(βζ − αβ + αζ − αζ2)

αβ(1− α)(λ− ζ)
(D.11)

56(A.69) has an error, that the term (1− αβ) should be multiplied by η. We replace that product in (D.8) by
α(1−ζ)(β−ζ)

ζ(1−α) .
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and hence

K(L) =
1

α(L− β/ζ)(1− λL)(λ− ζ)

[
λ(λ(ζ + L)− 1− ζL) +

(1− λ2)(βζ − αβ + αζ − αζ2)

(1− α)ζ

]
(D.12)

The final step is to calculate the expression for rt, namely Y (L)εt = (1 − (1 − α)LK(L))εt.

Since we require the numerator of Y (L) to have a factor (L− λ) (as in (D.6)), this implies

Y (λ) = 0 = 1− (1− α)λK(λ) = 1− λ(−λζ(1− α) + βζ − αβ + αζ − αζ2)

ζα(λ− β/ζ)(λ− ζ)
(D.13)

The RW II-HA solution is then characterized by the value of λ that satisfies this equation. It

is easy to show by direct substitution that Y (λ) = 0 when λ = α. This is exactly the value

of Λ that we obtain when addressing this example at the end of our proof of Theorem 2 in

Subsection B.2.8.

This is not the solution that would be obtained using by utilizing (A.70) in RW Theorem

1. This is because of an elementary error in RW, where it is easy to see that (A.38) does not

follow from (A.36) because the function Φ(L) is incorrectly defined.

D.1 The Non-Limiting Case:

When the ratio Σ of the variance of the idiosyncratic shock to the aggregate shock is finite,

then equations (D.8) and (D.9) become

αβ[K(L)−K(0)]− αβ(1− τ) (1−λ
2)L

λ(1−λL) [V (0)−K(0)]− α(1−ζ)(β−ζ)
ζ LK(L)

+(1− τ)α(1−ζ)(β−ζ)ζ(1−α)
(1−λ2)L
λ(1−λL) = αL(1 + β − L)K(L)− L (D.14)

αβ[V (L)−V (0)] = αL(1+β−L)V (L)−L−αβτ (1− λ2)L

λ(1− λL)
[V (0)−K(0)]+

τα(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)L

λ(1− λL)
(D.15)

where τ = 1
1+Σ , As above, all terms in (D.14) not involving K(L) must have a factor L− ζ, and

all terms in (D.15) not involving V (L) must have a factor L− β. This implies

αβK(0)−ζ+αβ(1−τ) (1− λ2)ζ

λ(1− λζ)
[V (0)−K(0)]− (1−τ)α(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)ζ

λ(1− λζ)
= 0 (D.16)

αβV (0)− β − αβτ
(1− λ2)β

λ(1− λβ)
[V (0)−K(0)] + τ

α(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)β

λ(1− λβ)
= 0 (D.17)

If we now subtract (D.16) from (D.14), then we can directly remove the factor L− ζ from the

whole expression to yield

α(L−β
ζ
)K(L) = −1+

αβ(1− τ)(1− λ2)

λ(1− λL)(1− λζ)
[V (0)−K(0)]−(1−τ)α(1− ζ)(β − ζ)

ζ(1− α)

(1− λ2)

λ(1− λL)(1− λζ)
(D.18)
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Figure 7: Values of λ as Σ changes. The unit circle is depicted as is usual in root-locus diagrams.

Then, incorporating the assumption that the interest rate rt = (1 − (1 − α)LK(L))εt has a

factor L− λ, it follows that

λ− αβ

ζ
− (1− α)λ[

αβ(1− τ)

λ(1− λζ)
[V (0)−K(0)]− (1− τ)

α(1− ζ)(β − ζ)

ζ(1− α)λ(1− λζ)
] (D.19)

Eliminating V (0) and K(0) from equations (D.16), (D.17) and (D.18) yields an equation for

λ57:

Σ(1− λβ)(λ− α) = (
αβ

ζ
− λ)(1− λζ) (D.20)

The paths of the roots λ of this equation as Σ changes are shown on the root-locus diagram,

Figure 7. Given that αβ
ζ < 1, there is a unique value of λ < 1 for each Σ, with the limiting

value λ = α as Σ → ∞.

Since the structure of this model is identical to that of GW, even though the underlying

assumptions slightly differ, it is straightforward to transform this into equation (35).

E The RBC Model

We first consider the standard RBC model with a zero-growth steady state. We distinguish

supply of capital and hours by households from demand for these factors of production by

firms. Then we consider a simplified special case without investment adjustment costs suitable

for an analytical solution.

E.1 The Full Aggregate Model

The household has a budget constraint in period t

Bt+1 = Rt−1Bt + VtKt +WtHt − Ct − It − Tt (E.1)

where Bt is the given net stock of financial assets at the beginning of period t, Vt is the gross

rental rate, Wt is the wage rate and Rt is the gross real interest rate paid on bonds held at the

beginning of period t, Ct is consumption, It is investment and Tt are lump-sum taxes. Beginning

57This equation is derived much more simply within a state space setting, and is part of a currently uncompleted
follow-up paper to this one.
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of period capital stock Kt accumulates according to

Kt+1 = (1− δ)Kt + It (E.2)

The household at time t maximizes a value function
∑∞

τ=0 β
τU(Ct+τ , Lt+τ ) where β ∈ (0, 1) is

a discount factor, Ct is real consumption, Lt = 1 − Ht is leisure and Ht is the proportion of

available hours worked.

First-order conditions are

Euler Consumption : 1 = RtEt [Λt,t+1] (E.3)

Euler Capital Supply : 1 = Et
[
RKt+1Λt,t+1

]
(E.4)

Stochastic Discount Factor : Λt,t+1 ≡ β
UC,t+1

UC,t
(E.5)

Labour Supply :
UH,t
UC,t

= −
UL,t
UC,t

= −Wt (E.6)

Leisure and Hours : Lt ≡ 1−Ht (E.7)

Gross Return on Capital : RKt = Vt + 1− δ (E.8)

The Euler consumption equation, (E.3), where UC,t ≡ ∂Ut
∂Ct

is the marginal utility of consump-

tion and Et[·] denotes rational expectations based on the agents’ information set, describes the

optimal consumption-savings decisions of the household. It equates the marginal utility from

consuming one unit of income in period t with the discounted marginal utility from consuming

the gross income acquired, Rt, by saving the income. (E.4) is essentially an arbitrage condition

for bond and capital investment. (E.6) equates the real wage with the marginal rate of substi-

tution between consumption and leisure. Equations (E.15)–(E.6) determine consumption, the

supply by households of capital, Ks
t and hours Hs

t , and aggregate demand Ct+It+Gt where Gt

are exogenous government services in a balanced government budget constraint with Gt = Tt.

Output and the firm behaviour is summarized by:

Output : Y s
t = F (At, H

d
t ,K

d
t ) (E.9)

Labour Demand : FH,t =Wt (E.10)

Capital Demand : FK,t = Vt (E.11)

where (E.9) is a production function. Equation (E.10), where FH,t ≡ ∂Ft
∂Ht

, equates the marginal

product of labour with the real wage. (E.11), where FK,t ≡ ∂Ft
∂Kt

, equates the marginal product

of capital with the cost of capital. The model is completed with an output, capital and labour

market equilibrium conditions:

Y s
t = Y d

t = Ct +Gt + It = Yt (E.12)

Hs
t = Hd

t = Ht (E.13)

Ks
t = Kd

t = Kt (E.14)
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For our quantitative analysis using a numerical solution, we now generalize the model by

adding the Smets and Wouters (2007) form of investment adjustment costs to the RBC model.

The law of motion for the household supply of capital becomes

Ks
t+1 = (1− δ)Ks

t + (1− S(Xt))It ; S′, S′′ ≥ 0 ; S(1) = S′(1) = 0

Xt ≡ It
It−1

Households at time t convert It of output into (1−S(Xt))It of new capital sold at a real price Qt

and then maximize with respect to {It} expected discounted profits. The first-order condition

for investment

Qt(1− S(Xt)−XtS
′(Xt)) + Et

[
Λt,t+1Qt+1S

′(Xt+1)X
2
t+1

]
= 1

and the net return on capital becomes

RKt ≡ Vt + (1− δ)Qt
Qt−1

(E.15)

Note that without investment costs, S = 0, Qt = 1 (E.15) reduces (E.8). We complete this set-

up with the functional form for investment adjustment, S(X) = ϕX(Xt − 1)2, which completes

the RBC model with investment adjustment costs.

We now specify functional forms for production and utility and AR(1) processes for exoge-

nous variables At and Gt. For production we assume a Cobb-Douglas function. The consumers’

utility function is non-separable and consistent with a balanced growth path when the inter-

temporal elasticity of substitution, 1/σ is not unitary. These functional forms, the associated

marginal utilities and marginal products, and exogenous processes are given (in equilibrium) by

F (At, Ht,Kt) = (AtHt)
1−αKα

t (E.16)

FH(At, Ht,Kt) =
(1− α)Yt

Ht
(E.17)

FK(At, Ht,Kt) =
αYt
Kt

(E.18)

logAt − log Āt = ρA(logAt−1 − log Āt−1) + εA,t (E.19)

logGt − log Ḡt = ρG(logGt−1 − log Ḡt−1) + εG,t (E.20)

Ut =
(C

(1−ϱ)
t Lϱt )

1−σ − 1

1− σ
(E.21)

UC,t = (1− ϱ)C
(1−ϱ)(1−σ)−1
t (1−Ht)

ϱ(1−σ) (E.22)

UH,t = −ϱC(1−ϱ)(1−σ)
t (1−Ht)

ϱ(1−σ)−1 (E.23)

(E.15)–(E.23) describe an equilibrium in aggregates Ct, Wt, Vt, Yt, Ht, Kt, It, Qt, Rt, R
K
t and

Tt, given At and Gt where for the latter we assume AR(1) processes about steady states Ā, Ḡ

driven by zero mean iid shocks εA,t and εG,t.
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E.2 The Zero-Growth Steady State

We assume a zero-growth steady state with Āt = Āt−1 = A say and Ḡt = Ḡt−1 = G. Kt =

Kt−1 = K, etc. Then the full steady state of the standard RBC model is given by:

Q = 1

X = 1

S = 0

R =
1

β

RK = R = V + 1− δ

V =
αY

K
Y = (AH)1−αKα

ϱC

(1− ϱ)(1−H)
= W

αY

H
= W

K

Y
=

α

R− 1 + δ
I = δK

Y = C + I +G

G = T

U =
(C(1−ϱ)(1−H)ϱ)1−σ − 1

1− σ
→ (1− ϱ) logCt + ϱ log(1−Ht) as σ → 1

UC = (1− ϱ)C(1−ϱ)(1−σ)−1((1−H)ϱ(1−σ))

UH = −ϱC(1−ϱ)(1−σ)(1−H)ϱ(1−σ)−1

Given A and G, the steady state above gives 8 equations in 8 stationary variables R, C, Y,

W, H, I, K , T . This describes the zero-growth steady-state equilibrium.

In recursive form this steady state can be written

R =
1

β

RK = R

V = RK − 1 + δ
K

Y
=

α

V
=

α

R− 1 + δ
I

Y
=

δK

Y
=

αδ

R− 1 + δ
C

Y
= 1− I

Y
− G

Y
= 1− I

Y
− gy

Hϱ

(1−H)(1− ϱ)
=

WH

C
=
WH/Y

C/Y
=

1− α

C/Y
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⇒ H =
(1− α)(1− ϱ)

ϱC/Y + (1− α)(1− ϱ)

Y = (AH)1−αKα = (AH)1−α
(
K

Y

)α
(Y )α ⇒ Y = AH(K/Y )

α
1−α

G = gyY

W = (1− α)
Y

H

I =
I

Y
Y

C =
C

Y
Y

K =
K

Y
Y

E.3 Linearization of the Aggregate Model

The linearized form of this RBC model with investment adjustment costs about a balanced

zero-growth steady state with R = RK = 1
β and cy = C

Y , iy = I
Y and gy = G

Y then takes the

state-space form

at = ρAat−1 + εA,t

gt = ρGgt−1 + εG,t

kst = (1− δ)kst−1 + δit

Et[uC,t+1] = uC,t − rt

EtrKt+1 = rt

rKt =
(R− 1 + δ)vt + (1− δ)qt

R
− qt−1(

1 +
1

R

)
it =

1

R
Etit+1 + it−1 +

1

S′′(1)
qt

with further outputs defined in terms of the dynamic state variables by

uC,t = −(1 + (σ − 1)(1− ϱ))ct + (σ − 1)ϱ
H

1−H
hst

uL,t = uC,t + ct +
H

1−H
hst

wt = uL,t − uC,t

yst = (1− α)(at + hdt ) + αkdt

ydt = cyct + iyit + gy gt = yst = yt

kst = kdt = kt

hst = hdt = ht

gt = tt

wt = yst − hdt

vt = yst − kdt
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E.4 A Special Case of the Aggregate Model in Linearized Form

The analytical example in Section C, taken from GW , is a linearized form of a special case of

the full RBC model for which hours Ht are constant and normalized at unity, ϱ = 0, Gt = 0

leaving only one technology shock process and there are no investment adjustment costs so

St(Xt) = S′
t(Xt) = 0 and Qt = 1. Hence qt = ht = gt = 0 and uC,t = −ct.

Then the linearized aggregate model above becomes:

kt+1 = (1− δ)kt + δit (E.24)

yt = (1− α)at + αkt = cyct + iyit (E.25)

Etct+1 = ct +
1

σ
rt (E.26)

wt = yt (E.27)

vt = yt − kt (E.28)

rt = EtrKt+1 (E.29)

rKt =
(R− 1 + δ)vt

R
= (1− β(1− δ))vt (E.30)

vt = (1− α)(at − kt) (E.31)

where the steady state ratios are given in E.2. Combining (E.24)–(E.25) gives

kt+1 = κ1kt + κ2at + (1− κ1 − κ2)ct (E.32)

Etct+1 = ct +
1

σ
rt (E.33)

where κ1 = R = 1
β and κ2 = (1−α)(R−1+δ)

α = (1−α)(1−β)(1−δ))
βα . Substituting in for κ1, κ2 and

R in terms of fundamental parameters we arrive at the following expression used in for the

illustrative model in the introduction of the main text

kt+1 =
1

β
kt +

1

αβ
at +

(
1− 1

αβ

)
ct (E.34)

A further specialization of the RBC model is provided by Rondina and Walker (2021) who

assume 100% capital depreciation. Then δ = 1 and (E.30) gives rKt = vt. Also technical change

in their production function is Hicks-neutral rather than labour-augmenting so that At becomes

total factor productivity and (1− α)at above is then replaced with at.

E.5 The Heterogeneous Agent Model

Following GW, we consider a standard islands model with a large number of households and

firms in each island i. The heterogeneous agent island-specific counterpart of the aggregate

model above is

ksi,t+1 =
1

β
ksi,t +

1

αβ
(at + εi,t) +

(
1− 1

αβ

)
ci,t (E.35)

Ei,tci,t+1 = ci,t +
1

σ
rt (E.36)
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yi,t = (1− α)(at + εi,t) + αkdi,t (E.37)

wi,t = yi,t (E.38)

vt = yi,t − kdi,t (E.39)

Combining (E.37) - (E.39) we arrive at

wi,t = at + εi,t −
α

1− α
vt (E.40)

According to the principle of market-consistent information both the rental rate vt and the

island-specific wage wi,t are assumed to be observed by households. It follows from (E.40) that

the composite shock at+ εi,t is also observed as assumed in the information set (5) in the main

text. Note that ksi,t ̸= kdi,t since capital is free to flow from less to more productive islands.

As in GW we set up the same RBC model without the restriction δ = 1. As in Rondina

and Walker (2021) households and firms are located in I islands each of which there are a large

number of both types of agents and firms on island i only employ labour from households on

the same island in which case the wage Wi,t is island-specific. There are aggregate and island-

specific shocks. In island i for the model these are a composite productivity shock process

At exp(εA,it). As in our more general model we can add a government spending shock process

Gt exp(εG,it where the aggregate components At and Gt are AR1 processes as before and εA,it

and εG,it are i.i.d mean zero shocks.58

We solve this heterogeneous agent (HA) model under imperfect information with these in-

formational assumptions and refer to the solution as II-HA. We also solve for the representative-

agent (RA) aggregate model under II assuming only vt is observed and refer to the solution as

II-RA. In all these cases agents are individually rational in arriving at decision rules (E.35) and

(E.36). What distinguishes the II-RA and II-HA(∞) solutions is a general equilibrium effect,

namely in the former agents do not use the fact they are representative; i.e., do not use ai,t = at.

E.6 Stability Analysis

The dynamic properties of the aggregate model under PI with kt,t = kt, ct,t = ct and at,t = at

are driven by [
kt+1

Etct+1

]
=

[
a11 a12

a21 a22

][
kt

ct

]
+ terms in at (E.41)

where

a11 = κ1 = R > 0 (E.42)

a12 = 1− κ1 − κ2 = − 1

α
(R− 1 + (1− α)δ)) < 0 (E.43)

a21 = − 1

σ
(R− 1 + δ) (1− α) < 0 (E.44)

a22 = 1− a12
σR

(R− 1 + δ)(1− α) > 0 (E.45)

58This is more restrictive than GW who have AR1 idiosyncratic processes as well.
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and R = 1
β .

The eigenvalues of (E.41) are given by

µ2 − (a11 + a22)µ+ a11a22 − a12a21 = 0 (E.46)

which we write as

µ2 − tr(A)µ+ det(A) = 0 (E.47)

with solution

µ =
tr(A)±

√
tr(A)2 − 4det(A)

2
(E.48)

The necessary condition for real roots is therefore tr(A)2 ≥ det(A) which can be written

(a11 + a22)
2 − 4(a11a22 − a12a21) = (a11 − a22)

2 + 4a12a21 ≥ 0 (E.49)

Since a12a21 > 0 in our model we conclude that both roots are real.

Given real roots and following the approach of Woodford (2003), Appendix C, we can show

that a necessary and sufficient condition for one root to be greater than unity, and one within

the unit circle is that

− tr(A)− 1 < det(A) < tr(A)− 1 (E.50)

From (E.42)–(E.45) a little algebra gives

det(A) = R =
1

β
> 1 (E.51)

tr(A) = R+ 1 +
(R− 1 + (1− α)δ)(R− 1 + δ)(1− α)

σαR
> R+ 1 (E.52)

Hence the condition (E.50) holds and the model is saddle-path stable for all permitted pa-

rameter values.

E.7 The Fundamentalness of the PI-RA Solution

The PI-RA Solution for the observable rental rate mE
t = vt is

mE
t = vt =

(
1− (κ1+κ2)µ1L

κ1

1− µ1L

)
εa,t (E.53)

where κ1 = a11 and κ1 + κ2 = 1 − a12 and µ1 is the stable eigenvalue of (E.48). From (E.42)-

(E.45) we have

κ1 + κ2
κ1

=
1− a12
a11

=
R+ 1−α

α (R− 1 + δ)

R
(E.54)

where R = 1
β . The special case of the model in Rondina and Walker (2021) with δ = 1 then

gives

mE
t = vt =

(
1− µ1

α L

1− µ1L

)
εa,t (E.55)
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noting that with δ = 1, the stable eigenvalue µ1 =
1
βµ2

where µ2 is the unstable eigenvalue.
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Figure 8: Simple RBC Model. Condition for the Fundamentalness of the MA process for the
Rental Rate vt. Parameter Values: α = 0.33, β = 0.985, δ = 0.025, 0.05, 0.1; σ ∈ [0.2, 2]

The condition for fundamentalness is therefore

κ1
(κ1 + κ2)µ1

=
R

(R+ (1−α)
α (R− 1 + δ))µ1

≥ 1

⇒ µ1 ≤
R

(R+ (1−α)
α (R− 1 + δ))

(E.56)

The RHS of (E.56) lies in the interval (0, 1) for all δ ∈ [0, 1] so, in principle, the PI-RA

solution for both the Rondina and Walker (2021) and GW models can be non-fundamental. In

fact, it can be shown that µ1 = µ1(σ) where µ′1(σ) < 0 for σ > 0 so there exists a threshold

for σ > 0 below which condition (E.56) holds. Figure 8 illustrates this result. Only for the risk

aversion parameter σ < 0.5 approximately and for an empirically plausible calibration of δ do

we have a fundamental MA process for the rental rate vt.

F A RBC Model with News Shocks

We now introduce fiscal policy and news shocks into the model of Section E.

F.1 Households

To highlight the role of nominal interest rates and the interaction of monetary and fiscal policy

we now express this budget in nominal terms. In fact, as we show, it leads to the same constraint

in real terms as in Section E. The household budget constraint is then

PBt B
n
t = Bn

t−1 + Pt(1− τk,t)r
K
t Kt−1 + Pt(1− τw,t)WtHt − PtCt − PtIt (F.1)
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where Bn
t is the number of 1-period nominal bonds held by the household at the end of period

t with face value unity (i.e., each paying one unit of currency in the next period), PBt = 1
Rn,t

is the price of bonds where Rn,t is the nominal interest rate, rKt is the rental rate on capital

received from firms, Wt is the real wage rate It is real investment, τk,t and τw,t are capital and

labour distortionary tax rates.

The first-order conditions for the household optimization problem are

Euler Consumption : UC,t = βRtEt [UC,t+1]

Labour Supply :
UH,t
UC,t

= −
UL,t
UC,t

= −Wt(1− τw,t) (F.2)

Leisure and Hours : Lt ≡ 1−Ht

Investment FOC : Qt(1− S(Xt)−XtS
′(Xt))

+ Et
[
Λt,t+1Qt+1S

′(Xt+1)X
2
t+1

]
= 1

Capital Supply : Et
[
Λt,t+1R

K
t+1

]
= 1

where Λt,t+1 ≡ β
UC,t+1

UC,t
is the real stochastic discount factor over the interval [t, t + 1], Xt =

It/It−1 is the rate of change of investment and RKt is the gross return on capital net of tax is

given by

RKt =

[
rKt (1− τk,t) + (1− δ)Qt

]
Qt−1

(F.3)

The only change from Section E are (F.2) and (F.3) where the supply of labour and capital by

the household is lowered by the existence of distortionary taxes. The rest of the model is as

before: firms still face a pre-tax real wage and rental rate of capital since it is the households

who pay these taxes.

F.2 Government Budget Constraint

Following Leeper et al. (2013) we assume a government balanced budget constraint:

Bt = 0 = Gt − (τw,tWtHt + τk,tr
K
t Kt−1) (F.4)

This gives a zero-growth steady state

τw =
G− τkr

KK

WH
=
gy − τkr

KK/Y

(1− α)
(F.5)

F.3 Fiscal Policy and News Shocks

We now introduce tax news shocks along the lines of Leeper et al. (2013). We model information

flows about tax rates with the follow policy rules

τw,t = ρw

J∑
j=0

[σwε
w
τ,t−j + ξσkε

k
τ,t−j ] (F.6)
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Figure 9: Impulse Responses to the News Shock εw,t

τk,t = ρk

J∑
j=0

[σwε
w
τ,t−j + ξσkε

k
τ,t−j ] (F.7)

where ξ allows labour and capital tax rates to be correlated. News shocks {εwτ,t−j , εkτ,t−j} enter

the information set of agents and
∑

j ϕj = 1 imposes information flows as moving averages.

We report results for the labour tax news shocks only with J = 2, ρw = ξ = 0, ϕ1 = θ,

ϕ2 = 1− θ, τk,t = τk, σw = 1. Then

τw,t = θεw,t + (1− θ)εw,t−1 (F.8)

where θ ∈ (0, 1). If θ = 0 then agents have perfect foresight because they observe τw,t+1

perfectly. If θ = 1 then agents have no foresight and receive news only about the current tax

rate. As θ goes from 1 to 0 agents receive more news about next period’s tax rate.

The model is solved with agents having PI in that they observe enough current values of

variables and the news shocks εw,t and εw,t−1 to achieve A-invertibility. Figure 9 shows the

impulse responses to the tax news shock τw,t as θ goes from 1 to 0 and receive more news about

the next period’s tax rate. Thus we see a corresponding increase in the response of real variables

such as output and investment.

Representative agent models that include news shocks imply that there is a common news

shock that is observed by all agents and not by the econometrician. For this to be consistent

with our assumptions in the HA case, we extend this approach to news shocks by assuming that

agents all observe the news shock, but with idiosyncratic noise. In the context of our paper,

with signal to noise ratio tending to zero, agents react solely in the current period to this noisy
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news shock. Thus our theoretical results can include this form of news shocks.

G Simple NK Partial Equilibrium Model

Consider a New Keynesian Phillips curve dependent on the real marginal cost mct and a mark-

up shock ε1,t assumed exogenous

πt = βπt+1,t + λmct + σ1ε1,t (G.1)

mct+1 = ρmct + σ2ε2,t+1 (G.2)

where λ = (1−θ)(1−βθ)
θ and (1−θ) is the constant per period probability that the Calvo contract

is reset and εi,t ∼ N(0, 1). This of the Blanchard-Kahn state-space form:
ε1,t+1

mct+1

Et[πt+1]

 =


0 0 0

0 ρ 0

−1/β −λ/β 1/β



ε1,t

mct

πt

+


σ1

σ2

0



ε1,t+1

ε2,t+1

0


G.1 PI Solution

Consider first the solution under agents’ PI. To solve this, we need to first go back (B.23) below

from the paper and the saddle path satisfying

xt +Nzt = 0 where
[
N I

]
(G+H) = ΛU

[
N I

]
(G.3)

where ΛU is a matrix with unstable eigenvalues. If the number of unstable eigenvalues of (G+H)

is the same as the dimension of xt, then the system will be determinate.

To find N , consider the matrix of eigenvectors W satisfying

W (G+H) = ΛUW (G.4)

Then, as for G and H, partitioning W conformably with zt and xt, from PCL we have

N = −W−1
22 W21 (G.5)

In our example

G+H =


0 0 0

0 ρ 0

−1/β −λ/β 1/β

 (G.6)

which has eigenvalues 0, ρ both less than unity and 1
β > 1. Now write the ij element of W as
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wij , i, j ∈ 1, 3. Then corresponding to the eigenvalue 1/β we have the eigenvector

[w31w32w33]


0 0 0

0 ρ 0

−1/β −λβ 1/β

 =
1

β
[w31w32w33] (G.7)

leaving w31, w32, w33 to satisfy

−w33 = w31

ρw32 −
λ

β
w33 =

1

β
w32

w33
1

β
=

1

β
w33

Without loss of generality, we can put w33 = 1. Hence w31 = −1 and w32 = λβ
βρ−1 giving

N =
[
β λ

1−βρ

]
.

From our general solution procedure above, the following matrices are defined

A = F =

[
0 0

0 ρ

]
; E = −N = −

[
β

β

1− βρ

]
; J = [β β] ; BB′ =

[
σ21 0

0 σ22

]

It follows that under PI that

πt = βε1,t +
λ

1− βρ
mct ≡ πPIt (G.8)

Along with (G.2) we then have a VAR(1) process in [πt mct]
′ and [ε1,t ε2,t]

′. In case of Nimark

(2008), where ε1,t = 0, this becomes

πt =
λ

1− βρ
mct (G.9)

which is Equation (11) in Nimark (2008).

G.2 Agents’ Imperfect Information

We consider agents’ information sets

1. Perfect Information (PI): [ε1,t mct πt]
′

2. Imperfect Information (II): πt

3. Imperfect Information (II): πt−1

Case (1), PI solution is above. Next consider Case (2) where agents have II with πt observed.

Following our PI solution in the main text, we arrive at

mct = ρmct−1 + ε2,t

m̃ct ≡ mct −mct,t−1 =
ρ

σ21 + p
(σ21m̃ct−1 − pε1,t−1) + ε2,t (G.10)
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πt = β

(
1 +

βρp

(1− βρ)(σ21 + p)

)
ε1,t +

λ

1− βρ
mct

− βρσ21
(1− βρ)(σ21 + p)

m̃ct (G.11)

where, from the main text, the agents’ steady-state Ricatti equation is given by

PA = FPAF ′ − FPAJ ′(JPAJ ′)−1JPAF ′ +BB′ = QAPA(QA)′ +BB′ (G.12)

This has a solution

PA =

[
σ21 0

0 p

]
where p =

ρ2pσ21
σ21 + p

+ σ22

noting that N −G−1
22 G21 =

[
0 βλρ

1−βρ

]
, This is an VARMA(1,1) process in [πt mct m̃ct]

′ and

[ε1,t ε2,t]
′.

Figure 10 shows the impulse response function following a negative marginal cost shock ε2,t.

The greater is σ21, the greater is the difference between II and PI.
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Figure 10: Inflation Dynamics under PI and II

To obtain the innovations representation, we first solve for Z in (B.75); it is easy to verify

that Z is given by

Z = PEJ ′(JPEJ ′)−1JPE =
1

σ21 + p

[
σ21

p

] [
σ21 p

]
(G.13)

The innovations process that provides the VARMA for πt, corresponding to (G.3) is then

s̃1,t =

[
0 0

0 ρ

]
s̃1,t−1 +

1

βσ21 +
β

1−βρp

[
σ21

p

]
ε̂t

84



πt =

[
β

λ

1− βρ

]
s̃1,t

from which it is readily seen that the system is back to a VAR(1) process as under PI. This

illustrates Theorem 4 of our paper: even though II adds more persistence than under PI, the

innovations process dynamics has the same dimensions in each case.

G.3 Nimark (2008)

Now consider the Nimark (2008) example of Section 3.2. Defining πt = pt − pt−1, it is easy to

see that πt = (1− θ)(p∗t − pt−1). Correspondingly, defining πi,t = (1− θ)(p∗i,t − pt−1), it follows

that one can derive the equation

πi,t = βθEi,tπi,t+1 + (1− θ)Ei,tπt + λθ(mct + εi,t) (G.14)

where λ = (1− θ)(1− βθ)/θ, with information set mA
1t = πt−1,m

A
2t = mct+ εi,t. Does Nimark’s

solution (with higher order expectations), in the limit as the variance of idiosyncratic shocks

dominates the aggregate component, tend to our solution which is an II solution?

We first write a candidate representation for the aggregate solution in the limiting case as

the Phillips curve above, but without any idiosyncratic shocks

πt = βθEtπt+1 + (1− θ)Etπt + λθmct

The state-space form is now:
mct+1

πt

Et[πt+1]

 =


ρ 0 0

0 0 1

−λ
β 0 1

βθ



mct

πt−1

πt

+


0 0 0

0 0 0

0 0 θ−1
βθ



mct,t

πt−1,t

πt,t

+


σ1

0

0



ε2,t+1

0

0


(G.15)

with observation mA
t = [0 1 0]


mct

πt−1

πt

. The saddle path is associated with the unstable

eigenvalue 1
β > 1, and the associated eigenvector yields N = [ λ

ρβ−1 0].

The agent’s PI solution is therefore

πPIt =
λ

1− ρβ
mct (G.16)

For II, we need the matrices

F ≡ G11 −G12G
−1
22 G21 J ≡M1 −M2G

−1
22 G21 (G.17)

A = G11 +H11 − (G12 +H12)N E =M1 +M3 − (M2 +M4)N (G.18)
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capturing intrinsic dynamics in the system:

F =

[
ρ 0

λθ 0

]
E = J = [0 1] A =

[
ρ 0
λ

1−βρ 0

]
(G.19)

It is easy to show that the solution to the Riccati equation (G.12) is PA =

[
1 + ρ2 ρλθ

ρλθ λ2θ2

]
and hence

QA =

[
ρ − ρ2

λθ

λθ −ρ

]
PAJ ′(JPAJ ′)−1J =

[
0 ρ

λθ

0 1

]
APAJ ′(JPAJ ′)−1J =

[
0 ρ2

λθ

0 ρ
θ(1−βρ)

]
(G.20)

In lag operator form, it then easy to verify that m̃ct = (1+ρL)vt, π̃t−1 = πt−1−πt−1,t−1 = λθLvt,

and therefore mct,t−1 =
ρ2L2

1−ρLvt−1, πt,t =
λ

1−βρ
ρL

1−ρLvt. Finally

πt = π̃ + πt,t = λ(θ +
1

1− βρ

ρL

1− ρL
vt) (G.21)

as in Nimark (2008).

A full check that this does represent the aggregate solution in the limiting case requires

the setting up of (G.14), which requires the calculation of Ei,tπt. If the variance of the id-

iosyncratic shock tends to ∞, then the relevant information set by Lemma 1(a) is the same

as for case studied above, i.e., Ei,tπt = Etπt = πt,t. The system setup therefore involves

m̃ct, π̃t−1,mct,t−1, πt−1,t−1

m̃ct+1

π̃t

mct+1,t

πt,t

Ei,tπi,t+1


=



ρ − ρ2

λθ 0 0 0

λθ −ρ 0 0 0

0 ρ2

λθ ρ 0 0

0 ρ
θ(1−βρ)

λ
1−βρ 0 0

−λ
β − (1−θ)ρ

βθ2(1−βρ) − (1−θ)λ
βθ(1−βρ) −

λ
β 0 1

βθ





m̃ct

π̃t−1

mct,t−1

πt−1,t−1

πi,t


+



vt+1

0

0

0

0


+



0

0

0

0

−λ
β εi,t


(G.22)

Although one can work through this to show that the aggregate of the πi,t is equal to πt, it

follows from the proof of the theorem.

H Recoverability

A recent innovation in the economics literature by Chahrour and Jurado (2022) is the notion

of recoverability, which they point out is a generalization of much earlier work by Kolmogorov

(see Shiryayev, 1992), and which relates to situations for which the shocks are non-fundamental,

so that the system of dynamic equations is non-invertible. We shall be calling on this notion

subsequently because when the II solution differs from that of the PI solution, then the former

will be characterized by non-invertibility (or non-fundamentalness of the shocks). The main

point that they make is that if the VARMA is known, then it is possible (under mild conditions)

to recover the values of all the shocks to have affected the VARMA process using the data,
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assuming observations over all time, as opposed to data only up to time t as available to

economic agents in the model. In particular what this means is that for a finite set of data,

one can obtain an accurate estimate of shocks that have taken place around the middle of the

dataset.

To be more specific, suppose that the VARMA process is fully invertible, then the residuals

as calculated above will converge to the true values of the shocks, so that the estimate of a

shock at time t will be calculated using all past values of the observations. We illustrate with

an example.

H.1 Fundamental and Non-fundamental MA Processes

For example, if measurements {mE
t : t ≥ −∞} are generated by the MA(1) process

mE
t = εt − θεt−1 = (1− θL)εt, −1 < θ < 1, εt ∼ N(0, σ2) (H.1)

where L is the lag operator, then the root of (1−θL) lies outside the unit circle and the process

is fundamental.59 Then εt =
∑∞

s=0 θ
smE

t−s. For a finite number of observations starting at

t = 0, truncating this sum at s = t will achieve a very close approximation (with probability

1) for values of t that are large enough to ensure that the variance of the untruncated terms,

which equals θ2tσ2/(1 − θ2) is below a certain threshold. However if θ > 1, then the above

representation is non-fundamental and cannot converge. If instead we write the lag operator

representation of εt as εt = mE
t /(1−θL) as εt = −θ−1L−1mE

t /(1−θ−1L−1), then we can rewrite

the representation of the shocks as

εt = −
∞∑
s=1

θ−smE
t+s (H.2)

Thus recovering the shocks requires summing over future values of the observations. Clearly,

for a finite sample of length T , one cannot obtain an accurate approximation to the most recent

shock εT , but one can obtain a good approximation to the earliest shocks provided that T is

large enough.

One can readily extend this to the MA(2) case mE
t = (1− θ1L)(1− θ2L)εt when −1 < θ2 <

θ1 < 1. Then the process is fundamental and we have

εt =
1

θ1 − θ2

(
θ1

1− θ1L
− θ2

1− θ2L

)
mE
t =

1

θ1 − θ2

( ∞∑
s=0

θs+1
1 mE

t−s −
∞∑
s=0

θs+1
2 mE

t−s

)
(H.3)

When however −1 < θ1 < 1 < θ2, we can rewrite the expression for the shock as

εt =
1

θ2 − θ1

(
− θ1
1− θ1L

+
L−1

1− θ−1
2 L−1

)
mE
t =

1

θ2 − θ1

( ∞∑
s=0

θs+1
1 mE

t−s −
∞∑
s=1

θ−s+1
2 mE

t+s

)
(H.4)

59An MA process mE
t = Φ(L)εt is a fundamental representation if the roots of Φ(L) lie outside the complex

unit circle (see, for example, Lippi and Reichlin, 1994 and Kilian and Lutkepohl, 2017).
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so that recovering the shocks requires summing over both past and future values of the obser-

vations. For finite samples the approximating values of shocks at the beginning and end of the

sample will be a poor fit to the true values.

Similarly, when −1 < θ2 < 1 < θ1, we have

εt =
1

θ1 − θ2

(
−

∞∑
s=0

θs+1
2 mE

t−s −
∞∑
s=1

θ−s+1
1 mE

t+s

)
(H.5)

Then when θ2, θ1 lie outside [−1, 1], we can rewrite the expression for the shock as

εt =
1

θ1 − θ2

(
− L−1

1− θ−1
1 L−1

− L−1

1− θ−1
2 L−1

)
mE
t =

1

θ1 − θ2

(
−

∞∑
s=0

θ−s+1
1 mE

t+s −
∞∑
s=1

θ−s+1
2 mE

t+s

)
(H.6)

so that recovering the shocks requires summing over only future values of the observations.

Again for finite samples the approximating values of shocks at the end of the sample will be a

poor fit to the true values.

Finally, consider an ARMA(1,1) process mE
t = (1−θL)

(1−L
θ
)
εt for a Blaschke factor. If θ > 1 this

is non-fundamental. But we can write

εt =
(1− L

θ )

(1− θL)
mE
t =

(L−1 − 1
θ )

(L−1 − θ)
mE
t

=

(
1 +

θ − 1
θ

L−1 − θ

)
mE
t =

(
1 +

1
θ2

− θ

1− θ−1L−1

)
mE
t (H.7)

Hence solving forward from time t we can recover the structural shock from the convergent

summation

εt = mE
t +

(
1

θ2
− 1

) ∞∑
s=1

θ−smE
t+s (H.8)

H.2 Blaschke Factors and Spectral Factorization

If a square non-invertible system of n stationary measurements and n shocks in each period

is estimated, then although the parameters of the system can be consistently estimated using

maximum likelihood, the innovations process (i.e., the residuals) will nevertheless correspond to

those of the statistically equivalent invertible system. They cannot therefore be matched to a

linear transformation of the structural shocks, and the same will automatically hold true when

a VAR approximation to the system is estimated, since by definition the latter is invertible. The

literature, summarized by Kilian and Lutkepohl (2017) suggests using Blaschke factors on the

lag operator representation of the VAR in order to ‘flip’ roots of the MA process from invertible

to non-invertible.

To see how this works, first consider the general MA process mE
t = Φ(L)εt assumed to be

fundamental and write

mE
t = Φ(L)εt = Φ(L)B(L)B(L)−1εt ≡ Φ(L)∗ε∗t (H.9)
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where ε∗t = B(L)−1εt and Φ(L)∗ = Φ(L)B(L). Then Lippi and Reichlin (1994) show that Φ∗

has roots inside the complex unit circle (so that mE
t = Φ(L)∗ε∗t is non-fundamental) if B(L)

is chosen to be a ‘Blaschke matrix’ which has two properties (i) all roots inside the complex

unit circle and (ii) B(L)−1 = B∗(L−1) where the asterik denotes the conjugate transpose.

Then corresponding to our MA(2) fundamental example Φ(L) = (1− θ1L)(1− θ2L) above with

−1 < θ1, θ2 < 1 we have three non-fundamental representations Φ(L)B(L) corresponding to

the Blaschke factors:

−1 < θ1 < 1 < θ2 : B(L) =
L− θ1
1− θ1L

(H.10)

−1 < θ2 < 1 < θ1 : B(L) =
L− θ2
1− θ2L

(H.11)

−1 < θ1, θ2 < 1 : B(L) =

(
L− θ1
1− θ1L

)(
L− θ2
1− θ2L

)
(H.12)

For the four possible combinations of θ1 and θ2 one MA(2) representation will be fundamental

and the other three non-fundamental. Only the fundamental one will be captured by the data

VAR estimation. If the econometrician is estimating θ1, θ2 she will be confronted with three

non-fundamental and one fundamental processes with identical statistical properties (i.e., the

same first and second moments). It therefore follows that one can only use recoverability to

obtain the structural shock unambiguously if the four cases (H.3)–(H.6) can be separated by

the econometrician by prior information on the location of θ1 and θ2.

H.3 A Further Test of Fundamentalness

Lippi and Reichlin (1994), Fernandez-Villaverde et al. (2007), Kilian and Lutkepohl (2017) and

others, have pointed out that non-invertibility is a missing information problem arising from

econometricians not using the appropriate measurements. Choosing the right measurements

may then alleviate the problem. Closely related to this idea and also to recoverability is a

recent paper by Canova and Sahneh (2017), that shows how to test the residuals of a VAR

model for fundamentalness. Suppose that a VARMA process mE
t in shocks εt is estimated in

the VAR form Φ(L)mE
t = ut, where ut are the residuals; then a linear transformation is applied

to ut in order to attempt to recover an approximation et to the structural shocks εt. However

in principle there is no way that one can determine whether et is a linear transformation of the

structural shocks εt using the VAR alone.

But suppose that there is an additional measurement mE
2t available to the econometrician

of the form mE
2t = Θ1(L)εt + Θ2(L)ε2t, which is dependent on the same shocks εt as the main

variables mE
t , and some additional shocks ε2t. If there is no invertibility problem for mE

t

estimated as a VAR, then mE
2t can be rewritten (as t→ ∞) as

mE
2t = Θ1(L)et +Θ2(L)ε2t (H.13)

If there is an invertibility problem then (H.13) no longer applies, because at least one element of
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εt depends on future values of et via one or more Blaschke factors60. Thus conducting a standard

Granger causality test of whether mE
2t depends on future values of the recorded residuals et is

sufficient to deduce whether the latter are fundamental or not.

I “Noisy News” Models

This section reviews two representative agent models which explore the econometric implications

of information assumptions in DSGE models: Blanchard et al. (2013) and Forni et al. (2017).

The former model begins by writing productivity at as a sum of a permanent component xt

following a root process and a AR1 transitory component zt as follows

at = xt + zt (I.1)

∆xt = ρx∆xt−1 + εt (I.2)

zt = ρyzt−1 + ηt (I.3)

Then with the assumptions that ρx = ρz ≡ ρ and ρσ2ε = (1 − ρ)2σ2η it can be shown that

E[at+1|at, at−1, · · ·] = at; i.e., at follows a random walk.

The information assumptions for agents are that they observe at and receive a noisy signal

about the permanent component xt given by

st = xt + νt ; νt ∼ n.i.i.d(0, σ1ν) (I.4)

Consumers are assumed to set ct equal to long-run productivity expectations

ct = lim
j→∞

E[at+j |It] = lim
j→∞

E[xt+j |It] (I.5)

(I.2) and (I.5) lead to

lim
j→∞

Et[xt+j − xt] =
ρ

1− ρ
Et[xt − xt−1]

= ct − Etxt

⇒ ct =
1

1− ρ
(Et[xt]− ρEt[xt−1]) (I.6)

The model in now in state-space form with a state vector [at, xt, zt, ct]
′, mA

t = [at, st]
′

and shock [εt, ηt, νt]
′. It is in the form given by our general procedure in Section (2.4) to give

a II-RA solution. Clearly with more shocks than observables it is not A-invertible. For the

econometrician, Blanchard et al. (2013) consider mE
t = [ct, at]

′ or mE
t = [ct, at, st]

′ but from

Theorem 3 neither can be E-invertible and have a VAR representation for the RE solution.

Forni et al. (2017) replace the exogenous shock component of the model (I.1)-(I.3) with

60Suppose for example that yt = (1−α−1L)εt, where α < 1, so that it is non-invertible. After this is estimated

as a finite VAR, it can then be approximately written as yt = (1 − αL)et. It follows that εt = (1−αL)

(1−α−1L)
et =

−αL−1(1−αL)

(1−αL−1)
et, so that it is dependent on future values of e.
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simply

at = at−1 + εt−1 (I.7)

and (I.5) becomes

ct = E[at+1|It] (I.8)

The rest of the model is unchanged. This simpler set-up is more tractable. In fact from (I.7)

and (I.8) we have

ct = E[at] + E[εt] (I.9)

so there are no intrinsic dynamics as defined in Proposition 6.

The state-space form of the RE solution then gives the II-RA solution:
∆at

∆ct

st

 =


L 0

γ + (1− γ)L γ(1− L)

1 1


[
εt

vt

]
(I.10)

In the absence of noise, vt = σ2v = 0, γ = 1 and agents observe the shock and we have PI. Then

the PI-RA solution is

∆ct = εt (I.11)

and after a shock consumption jumps immediately to its new long-run level. But with II

consumption jumps to ct = γεt in the first period and reaches ct+1 = ct + (1− γ)εt = ct−1 + εt.

Returning to II-RA, the spectrum of the two process ∆at, st is given by

E

[[
Lεt

εt + νt

]
[L−1εt εt + νt]

]
=

[
σ2ε Lσ2ε

L−1σ2ε σ2ε + σ2ν

]

(See Appendix A.3.) It is easy to show that an alternative spectral factorization of this joint

process is [
1 Lσ

2
ε
σ2
s

0 1

][
σ2u 0

0 σ2s

][
1 0

L−1 σ
2
ε
σ2
s

1

]

where σ2u = σ2εσ
2
ν/(σ

2
ε + σ2ν).

So starting with [
∆at

st

]
=

[
L 0

1 1

][
εt

vt

]
(I.12)

we arrive at the representation [
∆at

st

]
=

[
1 Lσ

2
ε
σ2
s

0 1

][
ut

st

]
(I.13)

where it is easy to show that [
ut

st

]
=

[
Lσ

2
v
σ2
s

−Lσ
2
ε
σ2
s

1 1

][
εt

vt

]
(I.14)
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gets us back to (I.12).

(I.12) and (I.14) have a root r = 0 and are non-fundamental. But the MA representation

(I.13) has a determinant equal to 1 and is therefore fundamental. In estimating a VAR for ∆at

and st the econometrician can generate IRFs for ut and the signal st but not the structural

shocks εt and vt. However, these shocks are recoverable in the sense of the term proposed by

Chahrour and Jurado (2022) To see this use (I.14) to obtain

[
εt

st

]
=

[
Lσ

2
v
σ2
s

−Lσ
2
ε
σ2
s

1 1

]−1 [
ut

st

]
=

[
L−1 σ2

ε
σ2
s

−L−1 σ2
v
σ2
s

]−1 [
ut

st

]
(I.15)

Thus the structural shocks at time t within the sample can be recovered by the econometrician

using future data at times t+1, t+2 ... which is available to her within sample, but not of course

available to the agents in the model. Thus recoverability is possible in this particular simple

example, but as Theorem 5 shows, this results depends on the absence of intrinsic dynamics.

A Blaschke factor features in this representation as follows. Consider a general specification

∆at = C(L)εt where C(L) is a rational function with C(0) = 0. In our model above C(L) = L.

Then (I.12) becomes [
∆at

st

]
=

[
C(L) 0

1 1

][
εt

vt

]
(I.16)

Let rj , j − 1, ..., n be those roots of C(L) within the unit circle and let r∗j be the complex

conjugate of rj . Then generalize (I.13) to[
∆at

st

]
=

[
C(L)
B(L) C(L)σ

2
ε
σ2
s

0 1

][
ut

st

]
(I.17)

where [
ut

st

]
=

[
B(L)σ

2
v
σ2
s

−B(L)Lσ
2
ε
σ2
s

1 1

][
εt

vt

]
(I.18)

where B(L) is a Blaschke factor

B(L) =

n∏
j=1

L− rj
1− r∗jL

(I.19)

Then (I.17) is fundamental because C(L)
B(L) = 0 only for |L| ≥ 1. Note in our simple model r1 = 0

and B(L) = L.

We can now estimate the shock processes in a DSGE model which is not E-invertible, owing

to the failure of A-invertibility. Maximum likelihood estimation of the parameters will generate

an innovations process, equal in the limit to the residuals from the estimation of a VAR.61 The

theoretical econometrician will, at least in our simple examples, be able to work out the Blaschke

factors and convert the innovations process into structural shocks, assuming data from −∞ to

+∞. While the Blaschke factors cannot be directly estimated because their second moments

61The a-theoretical econometrician will mistake VAR estimation for a VAR in the reduced-form structural
shocks and make a misleading comparison with the IRFs of the assumed DSGE model, even if the algorithm of
Forni et al. (2017) is used.
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are the same as white noise, they can be calculated from the estimated parameters.

For Blanchard et al. (2013), these conclusions demonstrate the limits of SVAR estimation

and the need for the estimation of the structural (DSGE) model. They estimate a medium-sized

NK model similar to Smets and Wouters (2007) by Bayesian-maximum-likelihood methods.

The estimation uses seven US time series (GDP, consumption, investment, employment, the

federal funds rate, inflation and wages) and eight shocks. The RE solution is of the form II-RA

described in our paper and is not A-invertible. But since SVARs are avoided altogether this

is of no consequence. Validation in such an exercise would compare second moments in the

model with those in the data rather than the impulse responses of the estimated model and an

estimated SVAR.

J Dynare Implementation

Levine et al. (2020) describes the working and use of the Imperfect Information (Partial Infor-

mation)62 software that solves, simulates and estimates DSGE RE models in Dynare under II.

The software is a MATLAB based toolbox and is integrated into Dynare version 4.6.1. The

solution techniques adopted are based on the work by Pearlman et al. (1986). In particular, the

software

1. Transforms Dynare’s linearized model solutions into the Blanchard-Kahn form which is

solved to yield a reduced-form system. See Theorem 1 of the paper.

2. Provides the conditions for invertibility under which II is equivalent to PI. See Theorem

3 of paper.

3. Implements multivariate measures of goodness of fit of the innovation residuals to the

fundamental shocks, and provides information as to how well VAR residuals correspond

to the fundamentals in DSGE models. See Theorem 7 of paper.

4. Simulates the model and uses the resulting reduced-form solution to obtain theoretical

moments and IRFs

5. Evaluates the reduced-form system via the Kalman filter to obtain the likelihood function

for estimation purposes and results from an identified DSGE-VAR.

62Different terminologies are found in the literature (see the discussion in the Introduction). Most DSGE
models are solved on the assumption that agents have PI of the current state as an endowment. This is the
default option in Dynare. Under II, this assumption is relaxed.
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