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Abstract

This paper proposes a generalized quantile cointegrating regressive model for nonstation-

ary time series, allowing coefficients to be unknown functions of informative covariates

at each quantile level. Using a local polynomial quantile regressive method, we obtain

the estimator for the functional coefficients at each quantile level, which is shown to be

nonparametrically super-consistent. To alleviate the endogeneity of the model, this pa-

per proposes a fully modified local polynomial quantile cointegrating regressive estimator

which is shown to follow a mixed normal distribution asymptotically. We then propose

two types of test statistics related to functional coefficient quantile cointegrating model.

The first is to test the stability of the cointegrating vector to determine whether the con-

ventional fixed-coefficient cointegration model is appropriate or not. The Second is to

test the presence of the varying coefficient cointegrating relationship among the economic

variables based on a modified quantile residual cumulative sum (MQCS) statistic. Monte

Carlo simulation results show that the two tests perform quite well in finite samples. Fi-

nally, by using the proposed functional coefficient quantile cointegrating model, this paper

examines the validity of the purchasing power parity (PPP) theory between China, Japan,

South Korea and the United States, respectively.
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1 Introduction

The cointegration, which was advocated by Granger (1981) and Engle and Granger (1987),

has become a popular and powerful tool to investigate the long-run equilibrium relationship

among economic variables. For example, the cointegration has been used to examine the money

demand function, the validity of the purchasing power parity (PPP) theory, and the price dis-

covery between the spot and future markets for asset prices. Despite its attractive properties,

less evidence in favor of cointegration is found in empirical application. Possible reasons for

this failure include the conflict between the instability of the long-run relationship and the

constancy of the cointegrating model coefficients, and the functional form misspecification. Al-

ternative cointegrating models have been proposed to reconcile the conflict. For example, to

allow for cointegrating coefficient to vary with different regimes, Balke et al. (1997) and Caner

and Hansen (2001) proposed the threshold cointegration, and Saikkonen and Choi (2004) pro-

posed the smooth transitional cointegration. Park and Phillips (2001) examined the general

nonlinear cointegration, while Bierens (1997) proposed a consistent test for the nonparametric

cointegration. Park and Hahn (1999), Bierens and Martins (2010), and Li et al. (2020) investi-

gated the time-varying cointegation. Xiao (2009a), Cai et al. (2009), Gu and Liang (2014) and

Tu and Wang (2019) studied the functional coefficient cointegration models and offered a more

flexible structure of cointegration.

Recently, to investigate the long-run equilibrium relationship between the leptokurtic and

heay-tailed time series, Xiao (2009b) proposed the quantile cointegrating regression which al-

lowed the cointegrating coefficients to be quantile dependent. The quantile levels for conditional

distribution of economic variables can indicate the states of an economy. Therefore, the quan-

tile cointegrating regression enables us to study whether the long-run equilibrium relationship

among economic variables varies over the economic states. As a result, quantile cointegrating

regression provides a more complete view of long-run relationship among economic variable of

interest. Moreover, as Xiao (2009b) pointed out, it could be regarded as a stochastic cointe-

gration model which included the conventional counterpart as a special case. Cho et al. (2015)

developed a quantile autoregressive distributed-lag model to jointly study short-run dynamics

and long-run cointegrating relationships across a range of quantiles and establish the asymp-

totic properities. The quantile cointegrating regression has been extensively used in empirical

application. For example, by using the quantile cointegration model, Lee and Zeng (2011) in-

vestigated the relationship between the spot and futures oil prices of West Texas Intermediate

and Burdekin and Siklos (2012) analyzed the contagion between Chinese, US and Asia Pacific

equity markets.

Athough the quantile cointegration model developed by Xiao (2009b) and Cho et al. (2015)
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enables researcher to examine the quantile dependent long-run relationship among economic

variables, it still assumes that the long-run relationship at each quantile level is linear and

fixed over the entire sample period. As Granger and Terasvirta (1993) pointed out, however,

“it was well known that relationships between major economic variables were nonlinear and

that nonlinear models abounded in economic theory.” To the best of our knowledge, only a few

studies considered the nonlinear or nonparametric quantile cointegrating regression. 1

To fill the gap, this paper firstly proposes a general functional coefficient quantile cointe-

grating regressive model. It is more flexible and includes the conventional quantile cointegating

model, nonlinear cointegrating model and functional coefficient cointegrating model as special

cases. To the best of our knowledge, this paper is the first to investigate the varying coefficient

quantile cointegrating model, allowing the cointegrating coefficients at each quantile level to

vary with stationary covariates. Suppose that n is the sample size and h is the bandwidth in the

local polynomial estimation, the convergence rate for the proposed estimator for the coefficient

is n
√
h while its stationary counterpart converges only at the rate

√
nh as shown by Cai et al.

(2000). In this sense, our estimator is nonparametrically super-consistent.

Secondly, We show that our proposed estimation for the cointegration parameter is n
√
h

consistent which however suffers from asymptotic bias due the endogeneity issue, making the

asymptotic distribution of the estimator non-standard. To correct the bias term, the “Fully

Modified” procedure by Phillips and Hansen (1990) is implemented and the result estimator is

shown to have a mixed normal distribution asymptotically.

Although our proposed method is robust to parameter instability and will always give con-

sistent estimation results, it is however less efficient when the underlying true parameter are

constant. Testing the parameter constantcy is therefore an important inference issue. As our

third contribution, we propose test statistics that allow us to test parameters instability at

a given quantile and over a range of different quantile levels. Another important inference

problem specific to cointegration analysis is to test for cointegration relationship. While there

are already various tests in the literature, none of them is applicable for our case due to the

complex structure of our proposed model and nonparametric estimation, we therefore propose

a new cointegration test, which is our final contribution. The asymptotic property of our pro-

posed test statistics for parameter (in)stability and cointegration are also well established. Via

substantial Monte Carlo simulations and comparison with other corresponding existing tests,

1Both Li et al. (2016) and Uematsu (2019) study the nonlinear quantile cointegration models and restrict the

coefficient to be time invariant. Liang et al. (2019) explore the kernel and local linear quantile estimation for

functional coefficient regression model with nonstationary covariates. Tu et al. (2021) propose a specificiation

test to test the funcitonal form specification in quantile cointegration. To the best of our knowledge, there is

no cointegration test for functional coefficient quantile model.

3



they are shown to have good finite sample performance.

We finally apply our proposed method into the analysis of the PPP theory for three major

Asian countries: China, Japan and South Korea, again United States. Our finding are sum-

marised as follows. The estimated relationships between the nominal exchange rate and price

level difference calculated according to Producer Price Index (PPI) demonstrate significant

asymmetric property across different economic states and time-varying property depending on

the value of interest rate spread. In addition, according to the cointegration test results, we find

that PPP theory is valid for explaining exchange rate between China and the United States

across different economic status. By contrast, PPP theory is only applicable for explaining ex-

change rate between Japan and the United States at normal or prosperity economic situations,

while it cannot explain that between South Korea and the United States only at the extreme

recession period.

The remaining of this paper is organized as follows. Section 2 introduces the functional

coefficient quantile cointegrating model and the estimating method. Section 3 establishes the

asymptotic properties of the model coefficient estimators. Section 4 develops two test statistics,

testing the parameters constancy/stability and the existence of long-run relationships between

variables. Section 5 presents the results of Monte Carlo simulations for our proposed tests.

Section 6 applies our proposed functional coefficient quantile cointegrating model and the two

test statistics into examining the validity of the PPP theory. Section 7 concludes. Section 8

provides supplementary simulation results.

For notation convenience,
p→ and ⇒ denote convergence in probability and in distribution,

respectively. The notation b·c denotes the integer part of a real number. B(·) is denoted as a

standard Brownian motion.

2 Functional Coefficient Quantile Cointegrating Model

Suppose that yt is a scalar dependent variable and xt is a k× 1 independent variable, and both

yt and xt are I(1), then the conventional linear cointegrating regressive model advocated by

Engle and Granger (1987) can be specified as

yt = β′xt + ut, (1)

where, β is the k × 1 coefficient vector and ut is the stochastic error. We say that yt and xt

are cointegrated if ut is stationary, and otherwise, the model specified above is likely to be a

spurious regression.

Over the past several decades, the linear cointegrating regressive model (1) has been widely

employed in analyzing the long-run relationships between non-stationary economic variables,
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which is assumed to be constant over the entire sample period. However, the assumption of

the fixed linear relationship is only an approximation to the potentially nonlinear, asymmetric

and time-varying counterpart in reality. Therefore, it might be subject to the misspecification

issue and lead to misleading estimating results and conclusion. For these reasons, we propose

the following general model:

yt = β(Ut, zt)
′xt + ut, (2)

where for simplicity, zt is assumed to be a scalar stationary variable and our analysis below could

be easily extended to multidimensional case with tedious notations. Moreover, Ut is a uniformly

distributed random variable over [0, 1], i.e., Ut ∼ U [0, 1]. β(Ut, zt) is the cointegrating coefficient

that is allowed to vary with both Ut and zt. Many similar models have been investigated in

the literature, for example, Cai et al. (2009) and Xiao and Phillips (2002) examined a model

where the cointegration coefficient is only allowed to be vary with zt (that is, β(·) is a unknown

function of zt), and Chen and Hong (2012) considered a time-varying coefficient model where

β(·) is set as a function of scaled time t/n. Liang et al. (2019) also studied a very similar model

with (2), but both yt and xt are assumed to be stationary in their model. Moreover, when

β(Ut, zt) ≡ β, then Model (2) will reduce to Model (1).

Denoting Ft = {xj, zj : ∀j ≤ t} as the information available up to time t, and assuming

that the right-hand side of (2) is monotonically increasing with Ut conditional on Ft, we can

write the τ -th conditional quantile of yt as

Qyt(τ |Ft) = β(τ, zt)
′xt + F−1

t (τ). (3)

The cointegration coefficient β(τ, zt) in Model (3) is a function of both the quantile level τ and

the smoothing variable zt. More specifically, for any given quantile level τ , β(τ, ·) is a function

of the smoothing variable zt, and thus, it can characterize the nonlinear and time varying

relationships between economic variables. For any given values of zt, β(·, z) is a function of the

quantile level τ , and therefore, it can capture the asymmetric relationships between economic

variables.

The generality and robustness of Model (3) is attractive and it enables us to model the

unknown and complicated long-run relationships between economic variables. However, it im-

poses a great challenge to the estimation of the coefficient. In this paper, we propose a local

polynomial quantile regressive approach.2 To be specific, for any given fixed quantile level τ ,

we consider a local polynomial approximation for the unknown coefficient function β(τ, zt).

2Specifically, we use local linear quantile regressive approach. In the literature, the local linear approach is

favorable owning to its nice minimax efficiency and better properties in boundary regions compared to the local

constant approach.
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Suppose that zt is an arbitrary point in a small neighborhood of z and β(τ, z) is continuously

differentiable with respect to z, then by the Taylor expansion, we can obtain

β(τ, zt) ≈ β(τ, z) + β(1)(τ, z)(zt − z) + · · ·+ β(q)(τ, z)

q!
(zt − z)q, (4)

where β(q)(τ, z) denotes the q-th order derivative of β(τ, z) with respect to z.

Let βj(τ, z) = β(j)(τ,z)
j!

, j = 0, 1, 2, · · · , q, we can use a local polynomial approach to fit the

function β(τ, zt) as long as the observations in a small neighborhood of z are sufficiently rich.

Substituting (4) into Model (3), the local polynomial nonparametric estimator of the coefficient

in Model (3) can be obtained by solving the following minimizing problem:

min
β

n∑
t=1

ρτ

(
yt −

q∑
j=0

(zt − z)jx′tβj(τ, z)

)
K(zt − z), (5)

where ρτ (u) ≡ u(τ − I(u < 0)) is the well-known check function, K(zt− z) ≡ k((zt− z)/h) is a

kernel function with a bounded support [−1, 1]and h is the bandwidth or smoothing parameter.

The resulting estimator β̂(τ, z) is the so-called local polynomial estimator of β(τ, zt) for zt near

z.

To simplify the notations, define Xtz = (x′t, (zt − z)x′t, · · · , (zt − z)qx′t)
′ as the new ex-

planatory variable, which is a local polynomial vector depending on location z, and β(τ, z) =

(β(τ, z)′, β1(τ, z)′, · · · , βq(τ, z)′)′. In matrix notation, the minimization problem (5) could be

rewritten as

min
β

n∑
t=1

ρτ (yt −X ′tzβ(τ, z))K(zt − z), (6)

which is similar to the the objective function of the nonparametric local quantile regression

model, see Yu and Jones (1998), Spokoiny et al. (2013). Moreover, the minimizing problem (6)

can be solved by using existing software packages (e.g, the quantreg in R.), which could be

seen as an advantage of our proposed method from the perspective of computation.

There are two important issues in nonparametric estimation: the selection of kernel function

and bandwidth. While different kernel functions could provide different estimation results since

they assign different weights to the data points, the results are in general quite similar when

sample size is large since kernel estimations is consistent and asymptotic normal. Without lose

of generality, we therefore choose to use the Gaussian kernel in this paper.

It is the bandwidth selection that are more important in nonparametric estimation and there

is usually a trade-off between estimation bias and variance: while estimators with smaller band-

width may also have smaller bias, its variance could be very large. Commonly used bandwidth

selection method in the literature including the rule of thumb, plug in and cross validation
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(CV) methods. When data are normally distributed, rule of thumb is a good choice. However,

it may lead to over smoothness when data are asymmetric or multimodal. Plug-in method is

based on minimizing the MISE, which could be difficult to calculate in nonprametric estima-

tion. As a data-driven method, CV has good finite sample performance and is widely used in

the literature. Cai and Xu (2009) also proposes a bandwidth selection method based on Akaike

information criterion, which has good in-sample performance but the out-sample performance

is less satisfactory. We therefore apply the CV method for bandwidth selection and the leave

one out cross validation (LOOCV) in particular. The algorithm can be described as follows:

(i). Determine the bandwidth range [hd, hu] and choose a bandwidth hi ∈ [hd, hu].

(ii). Estimate (3) using hi by excluding data point {yj, xj, zj} repeatedly for each j = 1, 2 . . . , n,

obtaining the predicted ŷj, and calculate the deviation series {ûjτ = yj − ŷj}nj=1.

(iii). Calculate the average predicted bias B(hi) = 1
n

∑n
j=1 ρτ (ûjτ ).

(iv). Repeat the above three steps for each hi ∈ [hd, hu] and the optimal bandwidth is the one

producing the minimal B(hi), that is, hopt = min
hd≤hi≤hu

B(hi).

3 Asymptotic distribution of the estimator

In this section, we establish the asymptotic properties of our proposed estimators defined in

minimization problem (5) and (6). First, we make the following assumptions.

Assumption 1. [Regularity Conditions]

(i). The kernel function K(·) : [−1, 1]→ R+, satisfies that
∫
K(u)du = 1,

∫
uK(u)du = 0 and

|u|j(k) =
∫
|u|jK(u)du <∞, j ≤ 2 + λ, 0 < λ ≤ 1.

(ii). As n→∞, 0 < h→ 0, nh→∞, and nh4+2λ → 0.

Assumption 2. [Smoothness Conditions]

(i). For any given quantile level τ , β(τ, zt) has continous q+ 1 order derivative at a neighbor-

hood around z and there exists a constant C such that ‖β(τ, zt)−β(τ, z)−β(1)(τ, z)(zt−
z)‖ ≤ C|zt − z|2.

(ii). The density function of zt, fz(·) is bounded uniformly continuous partial derivatives up

to the order q.

7



(iii). For any given number c, the stochastic error ut has continuously differentiable density

f(c) = F ′(c), where F (c) = Pr(ut < c|Ft) is the cumulative distribution function. More-

over, there exists a constant C such that |ft(c)− ft(d)| ≤ Cmin{|c− d|λ, 1}, 0 < λ ≤ 1.

Assumption 3. [Technical Conditions]

(i). For any t, xt/
√
n is uniformally bounded.

(ii). Let vt = ∆xt, then {ut, vt, zt} is a α-mixing process and the α-mixing coefficient satisfies

Σ∞t≥1t
γα(δ−2)/δ(t) <∞, where δ ≥ 2, γ > (δ − 2)/δ.

Assumption 1 is standard in nonparametric kernel estimation. Assumption 2(i) is needed for

implementing the q-th order Taylor expansion to the coefficient function. The rest assumptions

are for establishing the asymptotic normality of the proposed estimator. Defining the piecewise

derivative of the check function in the quantile regression as ψτ (utτ ) = τ − I(utτ < 0), utτ =

ut−F−1(τ) and denoting Kt = K(zt−z)−EK(zt−z), we have the following functional central

limit theorem.

Lemma 1. Under Assumptions 1 and 3, the partial sums of the stochastic process (Ktψτ (utτ ), vt)

follow the functional central limit theorems:( 1√
nh

∑bnrc
t=1 Ktψτ (utτ )

1√
n

∑bnrc
t=1 vt

)
⇒
(
Bk
ψ(r)

Bv(r)

)
= BM(0,Ω),

where BM(0,Ω) represents a mixed normal distribution with zero mean and covariance matrix

Ω, which could be further decomposed as

Ω =

(
ω2
ψ Ωψv

Ωvψ Ωvv

)
.

Notice that ω2
ψ = ν0(K)fz(z)τ(1−τ), where ν0(K) =

∫
K2(u)du, we can clearly see that the

kernel weighted sequence Ktψτ (utτ ) is asymptotically uncorrelated, and its partial sum process

converges to a Brownian Motion with variance proportional to τ(1− τ), which is the short-run

variance of ψτ (utτ ). This result indicates an inherent robustness of kernel estimator if ut is

weakly dependent. Intuitively, the downward kernel smoothing reduces the serial dependence

such that the kernel weighted sequence has an asymptotic variance similar to the asymptotically

uncorrelated sequence. In addition, the limiting processes Bk
ψ(r) and Bv(r) may be correlated

whenenver contemporaneous correlation between ψτ (utτ ) and vt exists, i.e., Ωψv = Ωvψ 6= 0. It

also ensures that the covariance matrix of Bv(r), Ωvv is nonsingular.

Based on Lemma 1, we then can establish the asymptotic normality of β̂(τ, z) given in

Theorem 1.
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Theorem 1. Suppose that Assumptions 1 – 3 hold. Then as n→∞,

n
√
h
[
β̂(τ, z)− β(τ, z)− B

]
⇒ 1

f(F−1(τ))

[
fz(z)

∫ 1

0

BvB
′
v

]−1 [∫ 1

0

BvdB
k
ψ + λvψ

]
, (7)

where B =
hq+1

(q + 1)!
βq+1(τ, z)µq+1, µj =

∫
ujK(u)du, j ≥ q+ 1, and λvψ represents the one side

long run variance-covariance matrix between vt and K(zt − z)ψτ (utτ ).

Theorem 1 shows that the estimated coefficients are nonparametrically super-consistent in

the sense that their convergence rate is faster than the one when data is stationary, which is√
nh (see Cai and Xu (2009)). However, due to the nonparametric estimation, the convergence

rate is still slower than n, which is the convergence rate of the estimating coefficients in Xiao’s

(2009b) quantile linear cointegrating regressive model. Similar to Xiao (2009a), there is a bias

term B in the asymptotic distribution of λvψ, which comes from the approximation error of local

polynomial estimation. Since we assume h → 0, this bias term is in general small and would

be negligible if we further assume nh(2q+3)/2 → 0, where q is the order of the local polynomial.

Moreover, regardless of the nonparametrical super-consistency, the asymptotic distribution of

β̂(τ, z) is non-standard and depends on the nuisance parameter λvψ. Similar to Xiao (2009b),

it can attribute to the endogeneity problem, that is, the correlation between K(zt − z)ψτ (utτ )

and vt. When they are uncorrelated, λvψ = Ωvψ = 0, and thus, the asymptotic distribution of

β̂(τ, z) is mixed normal.

In the general case, to obtain a mixed normal limiting distribution, we develop a fully

modified local polynomial quantile regressive estimator formulated as

β̂m(τ, z) = β̂(τ, z)− 1

f̂(F−1(τ))

[
n∑
t=1

xtx
′
tK(zt − z)

]−1 [√
h

n∑
t=1

xtv
′
tΩ̂
−1
vv Ω̂vψ + n

√
hλ̂mvψ

]
, (8)

where λ̂mvψ = λ̂vψ − λ̂vvΩ̂−1
vv Ω̂vψ. The terms λ̂vψ, λ̂vv, Ω̂vv and Ω̂vψ are consistent estimators for

λvψ, λvv, Ωvv, Ωvψ, respectively, which could be obtained by the following kernel estimation:

λ̂vψ =
M∑
j=0

k

(
j

M

)
Γvψ(j), λ̂vv =

M∑
j=0

k

(
j

M

)
Γvv(j),

Ω̂vψ =
M∑

j=−M

k

(
j

M

)
Γvψ(j), Ω̂vv =

M∑
j=0

k

(
j

M

)
Γvv(j), (9)

where k(·) is the kernel function with bounded support [−1, 1], and M is the bandwidth

parameter satisfying the conditions that M → ∞ and M/n → 0 as n → ∞. Moreover,

Γvψ(j) = 1
n

∑n−j
t=1 K(zt − z)vtψτ (ût+j,τ ) and Γvv(j) = 1

n

∑n−j
t=1 vtvt+j are the sample covariances.

f̂(F−1(τ)) is consistent estimators of the density function f(F−1(τ)).

Theorem 2 below gives the asymptotic distribution of β̂m(τ, z).
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Theorem 2. Suppose that Assumptions 1 – 3 hold. Then as n→∞,

n
√
h
[
β̂m(τ, z)− β(τ, z)− B

]
⇒ 1

f(F−1(τ))

[
fz(z)

∫ 1

0

BvB
′
v

]−1 [∫ 1

0

BvdB
k
ψ·v

]
⇒MN

(
0,

ω2
ψ·v

f(F−1(τ))2

[
fz(z)

∫ 1

0

BvB
′
v

]−1
)
. (10)

where Bk
ψ·v(r) = Bk

ψ(r)− ΩψvΩ
−1
vv Bv.

Note that Bk
ψ·v(r) is independent of Bv and has variance ω2

ψ·v = ω2
ψ−ΩψvΩ

−1
vv Ωψv. Therefore,

Theorem 2 shows that β̂m(τ, z) has a mixed normal limiting distribution by introducing non-

parametric corrrection terms. The fully modified local polynomial quantile regression estimator

β̂m(τ, z) generalizes the traditional fully modified regression estimator of Phillips and Hansen

(1990) and the fully modified quantile regression estimator of Xiao (2009b).

4 Inference

In this section, we propose two novel test statistics. The first is to test for stability of the

cointegrating vector, and the second is to test for cointegration between economic variable.

The parameter stability test is important since the traditional fixed-coefficient model could

be more efficient under the null hypothesis of stability but inconsistent under the alternative.

Moreover, the cointegration test is also of key importance as when cointegration fails y and x,

any estimated relationships (either fixed or time-varying) are likely to be spurious.

4.1 Testing for stability of the cointegrating vector

We first investigate the tests for parameter constancy at a given quantile, that is, H01 : β(τ0, z) =

β(τ0) for a given τ0 ∈ (0, 1). The alternative hypothesis is that the null hypothesis H01 does

not hold.

Under the null hypothesis H01, β(τ0) is a unknown fixed parameter vector at a given quantile

τ0. Xiao (2009b) has developed a super-consistent estimator of β(τ0) and shows that

n[β̂(τ0)− β(τ0)]⇒ 1

f(F−1(τ0))2

[∫ 1

0

BvB
′

v

]−1 ∫ 1

0

BvdBψ·v.

To test H01, one can directly compare the difference between estimated β̂(τ0, z) and β̂(τ0) over

a range of different values for z. Moreover, when H01 is true and by the result of Theorem 2,
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for any given value of z = z∗, we have

n
√
h[β̂m(τ0, z

∗)− β̂(τ0)] = n
√
h[β̂m(τ0, z

∗)− β(τ0)]−
√
h · n[β̂(τ0, z

∗)− β(τ0)]

= n
√
h[β̂m(τ0, z

∗)− β(τ0)] + op(
√
h)

⇒ MN(0,Ω(τ0, z
∗)),

where Ω(τ0, z
∗) =

σ2
ψ·v

f(F−1(τ0))2

[
fz(z

∗)
∫ 1

0
BvB

′
v

]−1

.

To further test the null hypothesis H01 over a range of different values of z, we treat β̂m(τ0, z)

as a function of z and propose the following Kolmogorov-Smirnov type test

SA ≡supz∈[z,z̄]|n
√
h[β̂m(τ0, z)− β̂(τ0)]| ≡ supz∈[z,z̄]|V̂ (τ0, z)|. (11)

Note that each V̂ (τ0, z) follows a mixed normal distribution asymptotically and the correlation

between V̂ (τ0, zt) and V̂ (τ0, zs) is zero, and for any t 6= s,

E

[
1

h
K

(
zt − z
h

)
K

(
zs − z
h

)]
= O(h)

p→ 0,

Theorem 3 establishes the asymptotic distribution of SA.

Theorem 3. Suppose that Assumptions 1-3 hold. Then under the null hypothesis H01, we have,

SA⇒ supz∈[z,z̄]|B(τ0, z)|, as n→∞,

where B(τ0, z) is a vector of independent Brownian bridge processes on [z, z̄].

In practice, one can tabulate the critical values for the limiting distribution of SA. Any

significantly large values of SA are evidences in favor of the alternative hypothesis.

By SA, one can check the stability of the coefficient at a given quantile. However, one may

also be interested in the stability of the coefficient across different quantiles irrespective of the

values for z, that is, one may be interested to test H02: β(τ, z) = β for all values of τ and z.

To this aim, we extend the SA test defined in (11) to a double supremum test. By the results

of Theorem 3 and when H02 is true, we can obtain

SM =supτ∈T supz∈[z,z̄]|V̂ (τ, z)|
⇒supτ∈T supz∈[z,z̄]|B(τ, z)|, (12)

where T is a closed interval of quantiles, B(τ, z) is a k-vector of independent Gaussian processes

which is often referred to as the Brownian Pillow, and for each pair of fixed (τ ∗, z∗), B(τ ∗, z∗) ∼
MN(0,Ω(τ ∗, z∗)).
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Although the limiting distribution of the proposed test statistics is free of nuisance param-

eter, the calculation of its critical value could be imprecise especially when sample size is small

due to the complicated form of the variance. As an alternative, we use the bootstrap method

to obtain the empirical critical values for the proposed tests. Similar to Xiao (2009b), the

bootstrap algorithm can be described as follows:

Algorithm 1

(i). Obtain β̂m(τ0, z) via our proposed estimating procedure over a range of interested values

for z ∈ [z, z̄], and the estimator β̂m(τ0) in Xiao (2009b). The test statistic SA can

obtained as

SA = supz∈[z,z̄]|V̂ (τ0, z)| = supz∈[z,z̄]|n
√
h[β̂m(z, τ0)− β̂(τ0)]|.

(ii). Fit a vector autoregressive (VAR) model to the series Ht = {vt, ûtτ}, where vt = ∆xt and

ûtτ = yt − β̂m(τ0)xt,

Ht =

p∑
i=1

AiHt−i + et.

The lag order p is usually determined by AIC. By fitting the above VAR model, one can

get the residual series êt = Ht −
∑p

i=1 ÂiHt−i.

(iii). Obtain the bootstrapped residual {ê∗t} by resampling the centered series {êt−
∑n

t=1 êt/(n−
p)}, and then, get the H∗t by H∗t =

∑p
i=1 ÂiH

∗
t−1 + ê∗t , where H∗t = {v∗t , û∗tτ}.

(iv). Obtain {y∗t , x∗t}nt=1 by x∗t = x∗t−1 + v∗t with x∗1 = x1, and y∗t = β̂(τ0)x∗t + û∗tτ under the H01.

(v). Obtain the bootstrapped estimator β̂(τ0)∗ and β̂m(τ0, z)
∗ by using the bootstrapped sam-

ple {y∗t , x∗t}nt=1, and get the bootstrapped test statistic

SA∗ = supz∈[z,z̄]|n
√
h[β̂m(τ0, z)

∗ − β̂(τ0)∗]|.

(vi). Repeat steps (iii)− (v) B times to obtain the empirical distribution for SA∗.

For any α ∈ [0, 1], let c(α) denote the corresponding 1−α bootstrapped critical value of the

empirical distribution of SA, then the null hypothesis H01 can be rejected at the α significance

level if SA ≤ c(α).

The above bootstrapped algorithm could be easily modified to obtain the bootstrapped

critical values for the SM test defined in (12). In Step (i), we estimate the model (1) by OLS

regression and our proposed estimator over a range of values for quantile levels and z. In Step

(ii), replace ûtτ by the estimated residuals ût = yt− β̂xt and generate y∗t in Step (iii) but under

H02 via y∗t = β̂x∗t + û∗t , where β̂ is the OLS estimator for the cointegration parameter.

12



4.2 Test for cointegration

In this section, we propose a new test for functional coefficient cointegration between yt and xt

at the τ -th quantile. Similar to Xiao (2009b), we examine the fluctuation of the residual and

consider the following partial sum process

Yn(r) =

√
h

n

bnrc∑
j=1

ψτ (û
m
tτ ), (13)

where ψτ (u) = τ − I(u < 0), ûmtτ = yt − x′tβ̂m(τ, zt), and it is easy to show that E[ψτ (û
m
tτ )] = 0.

As argued in Xiao (2009b), the above process Yn(r) would follow an invariance principle and

converges weakly to a standard Brownian motion when there exists cointegration relationship

between yt and xt. Compared to Xiao (2009b), Yn(r) defined in Equation (13) has an additional

scale term
√
h which accounts for nonparametric estimation effect. Similar to Xiao (2009b), we

propose a robust Kolmogorov-Smirnov type test for cointegration as follows

MQCS(τ) = max
j=1,··· ,n

√
h

ω̂ψ·v
√
n

∣∣∣∣∣
j∑
t=1

ψτ (û
m
tτ )

∣∣∣∣∣ . (14)

Theorem 4 provides the limiting distribution of MQCS(τ).

Theorem 4. Let ψτ (û
m
tτ ) = τ − I(yt ≤ x′tβ̂

m(τ, zt)). Then, under Assumptions 1-3 and irrespec-

tive of parameter (in)stability, if there exists a long-run relationship (cointegration) between yt

and xt as specified in model (3) at τ -th quantile, we have

MQCS(τ) = max
j=1,··· ,n

√
h

ω̂ψ·v
√
n

∣∣∣∣∣
j∑
t=1

ψτ (û
m
tτ )

∣∣∣∣∣⇒ sup
0≤r≤1

|W̃ (r)|, (15)

where W̃ (r) = −(
∫ r

0
Wv(s)ds)(

∫ 1

0
Wv(s)W

′
v(s)ds)

−1(
∫ r

0
Wv(s)dW

k
ψ·v(s)), W k

ψ·v(s) and Wv(s) are

standard Brownian motion independent of each other.

Theorem 4 shows that, the limiting distribution of MQCS(τ) is free of nuisance parameter.

Note that if we obtain the test statistic MQCS(τ) by using β̂(τ, zt) rather than the fully mod-

ified estimator function coefficient estimator β̂m(τ, zt), its limiting distribution would depend

on the nuisance parameter. This is because the limiting distribution of β̂(τ, zt) is not mixed

normal.

It is well known that the residual-based cointegration test with stationary null hypothesis

could suffer from size distortion (e.g., Shin (1994), Xiao and Phillips (2002)). To improve the

finite sample performance, we follow Phillips (2010) and Gu and Liang (2014) and propose a

bootstrap procedure for calculating the p-value of the test statistics as follows:

Algorithm 2

13



(i). Estimate Model (1) at the desired quantile level τ0 by our proposed procedure and save the

residual series ûtτ = yt − x′tβ̂m(τ0, zt). Calculate our proposed test statistics MQCS(τ0).

(ii). Construct bootstrapped {x∗t} by using the continuous moving block bootstrap: define the

block size as b and let n1, . . . , nm be drawn independently and uniformly from {0, 1, . . . , n−
b} with m = [n/b]. For k = 1, . . . , b., generate x∗sb+k = x∗k = x1 + (xn1+k − xn1) when

s = 0, and x∗sb+k = x∗sb + xns+1+k − xns+1 when s = 1, . . . ,m− 1.

(iii). Generate the bootstrap error by e∗t = vtûtτ where {vt}nt=1 is a stationary process indepen-

dent of all the other variables, with E (vt) = 0, V ar (vt) = 1 for t = 1, . . . , n, Cov (vt, vs) =

a ((t− s) /l), for t 6= s, where a(x) = 1 − |x| for |x| ≤ 1 and a(x) = 0 otherwise,

where l = In is a bandwidth parameter, and 1/l + l/n = o(1), as n → ∞. Let

y∗t = x′tβ̂
m(τ0, zt) + e∗t

(iv). Calculate the bootstrapped test statistics MQCS∗(τ) based on the sample {y∗t , zt, x∗t}nt=1.

(v). Repeat steps (iii) to (iv) B times to obtain the empirical distribution for MQCS(τ).

Based on the above procedure, we calculate the p-value of the test statistics, P ∗ = 1 −
G∗(MQCS(τ)) with G∗(·) denoting the empirical cumulative distribution of the test statistic

obtained by the above bootstrap algorithm. The null hypothesis of functional cointegration

will be rejected at the α significance level if P ∗ ≤ α.

5 Monte Carlo simulation

In this section, Monte Carlo experiments are conducted to investigate the finite sample perfor-

mance of the inference procedures proposed in Section 4.

5.1 Test for Parameter Stability

We first examine the finite properties of test for parameter stability defined in (11) and (12).

The Data Generating Process (DGP) is as follows:

DGP1 : yt = β(ut, zt)xt + ut,

xt = xt−1 + vt, t = 1, 2, · · · , n,(
ut

vt

)
∼ F

((
0

0

)
,

(
1 ρ

ρ 1

))
.

where zt is generated from IIDU [0, 1], and ut and vt are generated from standard normal or

t distributions with different degrees of freedoms (2 and 4). Unlike Xiao (2009b), we allow ut
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and vt to be correlated and the correlation coefficient, ρ is set as 0.5 and 0.8, for moderate

and strong degree of the endogeneity, respectively. More importantly, we consider the following

three cases for the cointegration vector β(ut, zt):

S1. β(ut, zt) = 1.

P1. β(ut, zt) =

ezt − 1, ut < 0,

1, ut ≥ 0.

P2. β(ut, zt) = [0.5 + Φ(ut)]cos
(√

2πzt
)
.

In case S1, the cointegration coefficient is a constant over all quantiles and irrelevant to other

variables, thus it is for investigating the empirical size of both the SA and SM tests. In case

P1, the cointegration vector is a constant when the residual is positive but changing with zt

when the residual is negative. Thus it could be used to investigate the power performances of

the SM test. Finally for case P2, β(ut, zt) is affected by informative covariates at each given

quantile, thus we use it to investigate the power performances of SA test. For all the above

mentioned three cases, the bootstrap procedure introduced in Section 4.1 is conducted to obtain

the critical values and the warp-speed method by Giacomini et al. (2013) is employed to speed

up the computation.3

The proposed data-driven bandwidth selection rule in Section 2 is employed when estimating

our proposed estimator defined in (6), and for simplicity, we use nonparametric local linear

estimator (i.e., p = 1). However, to obtain the modified estimator defined in (8), we also

need to estimate various variance-covariance terms as in (9), which involves the selection of the

bandwidth, M . Since bandwidth selection plays a key role, we examine the effects of various

bandwidths: M1 = 1,M2 = [τ(1 − τ)/φ(Φ−1(τ))]n1/3,M3 = 4(n/100)1/4, where M1 is a fixed

constant, M2 is of order n1/3 that also depends on the quanitle level,4 and M3 is a commonly

used bandwidth in the literature, e.g. Kwiatkowski et al. (1992), Xiao and Phillips (2002).

Without losing generality, we use Bartlett kernel function to ensure positive semi-definite of

the long-run variance-covariance matrix for all sample sizes.

Moreover, the modified estimator defined in (8) also depends on the sparsity function

f(F−1(τ)). Following Koenker and Xiao (2006), we estimate it by

f̂(F−1(τ)) =
2hn

F̂−1
n (τ + hn)− F̂−1

n (τ − hn)
,

3While in standard bootstrap method, a large number, B bootstrap resamples are usually drawn for any

given sample size, say K, in the wrap-speed bootstrap, we draw B = 1 bootstrap resample and compute the

statistics. A sequence of K points are then inverted to calculate the bootstrap critical values.
4As shown in Andrews (1991), O(n1/3) is the optimal bandwidth for Bartlett kernel under the correlated

and heteroscedastic error assumption.
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where F̂−1
n (τ) is the empirical distribution of the error term ut, and the bandwidth hn is set

according the rule proposed in Hall and Sheather (1988). The nominal significance level is set

as 5% and we replicate the simulations 1000 times for sample size n = 200 and 500, respectively.

Table 1 reports simulation results on the size and power of SM test with coefficient generated

according to S1 and P1, respectively. When the errors are weakly correlated(ρ = 0.5), we can

see that SM test has empirical size very close to the nominal 5% level, and the power also

increases quickly and approached 1 with sample size. As ρ becomes larger which leads to

stronger serial correlation and endogeneity issue, there is slight size distortion and power loss

especially in the case of infinite variance (t(2) distribution) when n = 200. They are, however,

both much improved as sample size increases. We could also see that our proposed SM test is

robust to various settings of bandwidths and error distributions.

Table 1: Finite-sample performance for SM test

N(0, 1) t(2) t(4)

Size Power Size Power Size Power

n = 200

ρ = 0.5

M1 0.040 0.422 0.042 0.262 0.036 0.420

M2 0.048 0.282 0.046 0.108 0.048 0.420

M3 0.062 0.460 0.050 0.200 0.036 0.410

ρ = 0.8

M1 0.070 0.468 0.026 0.008 0.026 0.198

M2 0.036 0.336 0.032 0.048 0.028 0.212

M3 0.036 0.416 0.030 0.056 0.028 0.206

n = 500

ρ = 0.5

M1 0.052 0.820 0.052 0.663 0.047 0.873

M2 0.050 0.819 0.053 0.666 0.051 0.874

M3 0.052 0.819 0.054 0.666 0.050 0.874

ρ = 0.8

M1 0.062 0.813 0.029 0.647 0.049 0.832

M2 0.048 0.811 0.032 0.640 0.051 0.832

M3 0.060 0.808 0.032 0.643 0.051 0.831

Note: The size of the test is calculated using the data with the true coefficient

specified in S1, and the power of the test uses the data with the true coefficient

specified in P1. The nominal significance level is set as 5%.
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Table 2: Finite-sample performance for SA test.

N(0, 1) t(2) t(4)

Size Power Size Power Size Power

n = 200

ρ = 0.5

τ = 0.25 0.062 0.602 0.100 0.795 0.060 0.756

τ = 0.50 0.052 0.926 0.072 0.754 0.070 0.780

τ = 0.75 0.062 0.752 0.098 0.762 0.052 0.794

ρ = 0.8

τ = 0.25 0.066 0.490 0.102 0.594 0.064 0.730

τ = 0.50 0.082 0.856 0.108 0.870 0.082 0.924

τ = 0.75 0.058 0.634 0.102 0.722 0.074 0.774

n = 500

ρ = 0.5

τ = 0.25 0.074 0.946 0.088 0.906 0.056 0.946

τ = 0.50 0.052 1.000 0.052 1.000 0.048 1.000

τ = 0.75 0.060 0.962 0.086 0.974 0.056 0.992

ρ = 0.8

τ = 0.25 0.070 0.950 0.112 0.944 0.066 0.968

τ = 0.50 0.052 1.000 0.074 1.000 0.110 1.000

τ = 0.75 0.064 0.972 0.074 0.952 0.048 0.988

Note: The size of the test is calculated using the data with the true coefficient specified

in S1, and the power of the test uses the data with the true coefficient specified in P2.

The nominal significance level is set as 5%.

Table 2 reports the finite sample performance of SA test at 0.25, 0.50 and 0.75 quantile

levels. For all three cases, we only report results for M = M2 since the results are insensitive

to bandwidth selection similar to those reported in Table 1. We see that the empirical size and

power results are better at 0.5 quantile level than that at tail quantiles. This is not surprising

due to insufficient data in the tail of the distribution making the estimation for the sparsity

function less precise. Moreover, the empirical size is slightly inflated when the innovations are

generated from t(2) distribution when n = 200. As sample size increases, the proposed test

statistic has both good size and power performance, corroborating the asymptotic theory.

5.2 Test for cointegration

In this section, we examine the finite sample performance of the proposed MQCS test defined

in (15).
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5.2.1 Test at Median Quantile

While our proposed test could be applied for testing of cointegration over various quantile

levels, we first focus on median (τ = 0.5) and compare its performance with many existing

mean cointegration tests, including the Tn statistic by Xiao (2009a) and CUSUM test by Xiao

and Phillips (2002). The SupY test by Xiao (2009b) for testing cointegration in constant-

coefficient quantile regression is also conducted for comparison.

Consider the following DGP:

DGP2 : yt = β(ut, zt)xt + ut, t = 1, · · · , n,
xt = xt−1 + vt,

ut = γut−1 + εt,(
εt

vt

)
∼ F

((
0

0

)
,

(
1 ρ

ρ 1

))
.

where the variables zt, εt and vt are generated from the same stochastic process as in DGP1.

Notice that we now have an additional process for ut, and the parameter γ determines whether

the cointegration relationship between variables exists or not: when γ < 1, ut is stationary, and

yt and xx are said to be cointegrated; when γ = 1, ut is nonstationary, and the relationship

between yt and xx is then spurious. In our simulations, we consider γ = 0, 0.2, 0.4, 0.6, 0.8

and 1. While γ = 1 is to investigate the power of the test, the rest settings are for the size

performance. Regarding other parameters, we consider the following three specifications for

coefficient function:

1). β(ut, zt) = 1;

2). β(ut, zt) = sin
(√

2πzt
)
;

3). β(ut, zt) = [0.5 + Φ(ut)] cos
(√

2πzt
)
;

where the coefficient is allowed to be time-varying in the last two cases, and also quantile

dependent in the third case.

To save space, we only report the size and power performance for bandwidth M = M2 for

ρ = 0.5 in Table 3 and ρ = 0.8 in Table 4 with n = 200. Results for other specifications are

similar and presented in Section 8.5

Since the results for ρ = 0.5 and ρ = 0.8 are quite similar, we focus on analysing results

in Table 4 and summarize the results as follows. First, as expected, the size of all four test

5Additional simulation results for p = 2 when fitting nonparametric regression are also provided.
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statistics exhibit different degrees of distortion as γ increases, since larger value of γ implies

more persistent property for ut. When γ = 0.8, the DGP is a nearly cointegrated system and

the size are inflated for most cases. Second, when the true model has constant coefficients,

it is interesting to find that the SupY test has better size performance than MQCS, Tn and

CUSUM tests but worse power performance under all the considered three error distributions.

Therefore, when the cointegration coefficient is constant, none of the four considered tests

uniformly dominates the others, even the SupY and CUSUM tests are designed specifically

for constant cointegration test. Third, when β(ut, zt) = sin
(√

2πzt
)
, we can see that the SupY

test has no power against the false null hypothesis of cointegration. Although the powers for Tn
and CUSUM are much higher than the SupY test, they are lower than our proposed MQCS

test. Fouth, MQCS test performs the best when β(ut, zt) = [0.5+Φ(ut)]cos
(√

2πzt
)
, while the

Tn and CUSUM tests based on mean regression display severer size distortion and misleading

high power. To summarize, the proposed MQCS test statistic displays reasonably size and

good power performance compared to other alternative tests even in small samples.

Finally, we offer additional comment on the impact of bandwidth selection on the size per-

formance of the proposed MQCS. As has been mentioned, all the tests exhibits size distortion

when γ is large which implies stronger persistence of the data. Therefore when estimating the

variance, it is natural to consider using larger M , that is, the selection of M should also depend

on γ. However, for simplicity and by convention in the literature, we do not consider such a

case as there is yet no former theoretical justice. We expect the size performance could be

improved further and leave the selection of more appropriate bandwidth selection in variance

estimation for quantile regression as a future research.

5.2.2 Tests on various quantiles

In this section, we investigate the finite sample performance of MQCS test across different

quantile levels and the DGP is set as follow:

DGP3 : yt = β(ut, zt)xt + ut, t = 1, · · · , n,
xt = xt−1 + vt,

ut = γuut−1 + εt,

γu =

0, ut−1 < 0,

1, ut−1 ≥ 0,
,

(
εt

vt

)
∼ F

((
0

0

)
,

(
1 ρ

ρ 1

))
.
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where vt and εt are generated from N(0,1) or student-t distributions. Notice that, γ is a

function of ut−1. If the previous exogenous shock on the dependent variable is positive, then

its impact would continue to the present period. If negative, it has no persistent impact. For

the symmetric error distribution above, cointegration relation between yt and xt only exists at

quantile levels below 0.5. Therefore, the rejection rates at lower quantiles of the test correspond

to size performances and the rest scenarios demonstrate the power of the proposed test. We

consider τ = 0.25, 0.5 and 0.75 in the following analysis and n = 500, 1000 since large sample

could provide more accurate estimation for density function at the tail.

It is also interesting to compare the performances of the MQSC test with that of the

SupY . To this end, we allow the errors following different distributions and consider two

function patterns in this section,

1. Constant-coefficient, β(ut, zt) =

1, ut−1 < 0,

0, ut−1 ≥ 0.

2. Functional-coefficient, β(ut, zt) =

[0.5 + Φ(ut)]cos
(√

2πzt
)
, ut−1 < 0,

0, ut−1 ≥ 0.

where the coefficient is a constant at specific quantile in the first case. However it is allowed to

be time-varying and also quantile dependent in the second case.

Table 5: Empirical size and power (n = 500,M = M2)

MQCS(1) MQCS(2) SupY

N(0, 1) t(2) t(4) N(0, 1) t(2) t(4) N(0, 1) t(2) t(4)

Constant-coefficient

ρ = 0.5

τ = 0.25 0.076 0.048 0.064 0.090 0.142 0.108 0.088 0.050 0.070

τ = 0.50 0.950 0.910 0.950 0.986 0.974 0.984 0.946 0.954 0.962

τ = 0.75 0.224 0.198 0.214 0.548 0.532 0.514 0.268 0.260 0.234

ρ = 0.8

τ = 0.25 0.074 0.060 0.086 0.134 0.122 0.158 0.096 0.080 0.108

τ = 0.50 0.943 0.938 0.940 0.990 0.918 0.974 0.957 0.942 0.954

τ = 0.75 0.260 0.276 0.254 0.508 0.438 0.492 0.264 0.226 0.302

Functional-coefficient

ρ = 0.5

τ = 0.25 0.090 0.106 0.062 0.124 0.112 0.162 0.112 0.112 0.102

τ = 0.50 0.964 0.960 0.938 0.980 0.999 0.986 0.934 0.970 0.958

τ = 0.75 0.276 0.258 0.276 0.514 0.218 0.490 0.243 0.320 0.298

ρ = 0.8

τ = 0.25 0.074 0.060 0.090 0.180 0.168 0.164 0.092 0.138 0.128

τ = 0.50 0.964 0.924 0.942 0.986 0.982 0.982 0.978 0.964 0.960

τ = 0.75 0.252 0.244 0.250 0.532 0.444 0.468 0.271 0.290 0.250
Note: The MQCS is our proposed test, where the value in parentheses indicates the order of Taylor expansion. SupY is the test proposed by Xiao

(2009b). M2 = [τ(1− τ)/φ(Φ−1(τ))]n1/3
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Table 6: Empirical size and power (n = 1000,M = M2)

MQCS(1) MQCS(2) SupY

N(0, 1) t(2) t(4) N(0, 1) t(2) t(4) N(0, 1) t(2) t(4)

Constant-coefficient

ρ = 0.5

τ = 0.25 0.060 0.062 0.066 0.162 0.120 0.116 0.072 0.094 0.072

τ = 0.50 0.982 0.990 0.974 0.998 1.000 1.000 0.982 0.982 0.974

τ = 0.75 0.186 0.256 0.194 0.464 0.450 0.472 0.264 0.342 0.232

ρ = 0.8

τ = 0.25 0.058 0.042 0.058 0.168 0.092 0.126 0.086 0.058 0.066

τ = 0.50 0.976 0.970 0.978 0.998 0.980 1.000 0.994 0.970 0.970

τ = 0.75 0.192 0.214 0.198 0.450 0.456 0.474 0.244 0.250 0.236

Functional-coefficient

ρ = 0.5

τ = 0.25 0.096 0.094 0.064 0.110 0.104 0.164 0.108 0.096 0.070

τ = 0.50 0.984 0.982 0.980 1.000 0.998 1.000 0.994 0.994 0.982

τ = 0.75 0.272 0.302 0.212 0.462 0.460 0.512 0.214 0.304 0.234

ρ = 0.8

τ = 0.25 0.084 0.072 0.090 0.170 0.160 0.156 0.106 0.110 0.118

τ = 0.50 0.986 0.984 0.982 1.000 0.998 1.000 0.988 0.990 0.990

τ = 0.75 0.240 0.240 0.226 0.470 0.480 0.436 0.228 0.194 0.278
Note: The MQCS is our proposed test, where the value in parentheses indicates the order of Taylor expansion. SupY is the test proposed by Xiao

(2009b). M2 = [τ(1− τ)/φ(Φ−1(τ))]n1/3

The results are shown in Table 5 and 6. Both the proposed MQCS test and the traditional

SupY test are able to distinguish the cointegration relation at low quantile levels (e.g. τ = 0.25)

and non cointegration relation at high quantile levels (e.g. τ = 0.5, 0.75).

When the coefficient of the true model is constant, MQCS(1) test where the coefficient is

estimated by the first order Taylor expansion has similar size performances to that of SupY

test for all three distributions, but the size of MQCS(2) exhibits size distortion. Meanwhile,

MQCS(2) test has the best power performances, followed by SupY test and MQCS(1) test.

Turning to the functional coefficients model, the sizes of SupY become significantly inflated.

When the degree of endogeneity is high (ρ = 0.8), it reaches the highest level of around 13.8%

in the low quantile (τ = 0.25). MQCS(1) test displays size improvement by reducing 56.5%

((0.138-0.06)/0.138) distortion and still has comparable power. While MQCS(2) test suffers

the same size distortion as SupY test does, it exhibits the highest power for all cases. As the

sample size becomes larger (n = 1000), MQCS tests show slightly better size performance in

functional coefficient model while SupY test displays considerable size improvement in constant

coefficient model, which is consistent with the theory that the convergence rate of nonparametric

estimation is slower than that of parametric estimation.
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6 An empirical application to PPP

6.1 Background

The PPP theory is among the most influential theories about exchange rate determination,

which also serves as the basis for the formation of other exchange rate determination theories.

Because of its implication for policy-making, whether it could be applied in interpreting real

economy has drawn much attention from both the government and researchers. In the literature,

most research believe that the PPP theory correctly explains the determination of the long-

term trend of the exchange rate, that is, in the long run, the trend of the exchange rate is

parallel to that of the purchasing power parity. However, in the short term, the real exchange

rate fluctuates sharply, and the adjustment speed towards long-term equilibrium is very slow.

This phenomenon is usually termed as the “purchasing power parity puzzle” (Rogoff, 1996).

Moreover, based on employing different research methods, the empirical findings in the literature

have not yet reached a consensus on the applicability of PPP theory. The failure might be

caused by the complex relationships between economics variables, which is more likely to be

asymmetric, nonlinear and time-varying.6 As have been well documented in our analysis above,

our proposed method is flexible enough, incorporating most of the existing models as special

cases. In the following analysises, we apply our proposed method and re-examines the PPP

theory for three major Asian countries: China, South Korea and Japan against US.

The PPP theory suggests that one unit domestic currency should have the same purchasing

power when converted into foreign currency. In a perfect competitive market environment, if

the prices for the same goods are different in different regions, then arbitrageurs can make

profits through the price difference until the prices converge. In the literature, the PPP theory

is usually expressed as the following form:

st = α + β(pt − p∗t ) + ut, (16)

where st, pt, p
∗
t are the logarithms of the nominal exchange rate, domestic price and foreign price

at time t, respectively, and the slope coefficient, β is expected to be positive. In this paper, we

re-estimate the above model (16) by our proposed method.

6.2 Data and Preliminary Statistical Analysis

In this article, we calculate the nominal exchange rate, st by converting the US dollar to the

domestic currency directly, and use Producer Price Index (PPI) as the measure for the price

6While linear cointegration analysises usually fail in supporting the PPP theory, studies using nonlinear

cointegration analysis tend to find evidence in favour of it (Cai et al., 2009; Hong and Phillips, 2010).
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level.7 We choose the interest rate spread as the smoothing variable since first, it could affect

the flow of short-term capital across the world, resulting in exchange rate changes, and second,

the interest rate is also closely related to the price level. Following Li et al. (2015), we construct

the smoothing variable as follows:

zt = (Rt,l −Rt,s)− (R∗t,l −R∗t,s), (17)

where Rt,l, Rt,s are the domestic long-run and short-run interest rate, respectively, and R∗t,l
and R∗t,s are their foreigner counterparts. Apart for South Korea, the 10-year treasury bond

yield and the three-month inter-bank lending rate are used as proxy indicators for long-term

and short-term interest rates. Regarding for the South Korea, since the three-month interbank

lending rate is not available, we use the three-month certificate of deposit yield rate as an

alternative. The sample period for Chinese YUAN (CNY) against the US dollars (USD) is

from August 2005, the time at which China conducted its reform moving away from a fixed

exchange rate, to December 2020. Due to data availability, the time span of Japaneses YEN

(JPY) against USD is from January 1989 to December 2020, and the data for South Korean

won (KRW) against USD is from October 2000 to December 2020. The PPI index is calculated

on the basis of 2010. All the data are collected from the International Financial Statistics (IFS)

and Wind databases.

Figure 1 plots the time series of exchange rate and PPI difference for each of the three

country pairs. From the left plot, we could see that the CNY exchange rate and the nominal

exchange rate determined by PPP differ greatly at different stages. During the 10-year time

period of the so called “721 exchange rate reform” from 2005 to the end of 2014, the CNY

exchange rate against the US dollar exhibits a unilateral appreciation trend, and the divergence

between the CNY exchange rate and the exchange rate suggested by PPP is also significant.

The CNY enters a depreciation period after 2015 due to, on the one hand, the central bank

adjust the CNY central parity pricing mechanism; on the other hand, multiple macro shocks

happen such as domestic stock market crash, and the Federal Reserve’s interest rate hike. At

the same time, the price levels characterized by PPI difference also demonstrates an upward

trend. This depreciation ends after 2017 when the fourth exchange rate reform is carried out

to eliminate the impact of unilateral market irrational expectations. During this time period,

it is interesting to see that the CNY exchange rate determined by the PPP theory and the

nominal exchange rate display an opposite trend. The middle plot shows that the fluctuation

of the nominal exchange rate of Japan against the US dollar is cyclical, while the exchange rate

7Compared with Consumer Prices Index (CPI), PPI also considers intermediate products, and therefore

involves a wider range of goods portfolios. Moreover, the PPI is more sensitive since prices changes usually

initial in the production sectors.
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suggested by by PPP has a downward trend. From the the plot on the right we find that the

KRW experienced the largest depreciation rate of 25.7% against the US dollar at around 2008

due to the financial crisis. During this period, the PPI difference between the two countries

also rise sharply. Prior to this time period, the exchanges rate of KRW and the prices difference

display quite similar patters and their relationship becomes less unclear afterwards.
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Figure 1: Plots of the logarithms of the nominal exchange rate (i.e. st, see the left axes) and

the price difference (i.e. pt − p∗t , see the right axes).

Table 7 shows descriptive statistics of each variable. The values of skewness and kurtosis

suggest that the distributions of all series are asymmetrical with heavy tails . The Jarque-

Bera test shows further evidence that all the series are non-normal with one exception: South

Korea. All these results suggest that quantile regression method is preferable in analysing

the relationships between the variables, which could provide more comprehensive and reliable

results.
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Table 7: Descriptive statistics

N Mean SD Skewness Kurtosis JB-statistic

pt − p∗t

China 186 -0.039 0.036 0.199 -0.964 7.982∗∗

Japan 384 0.188 0.231 0.188 -1.516 38.650∗∗∗

South Korea 243 -0.016 0.051 -0.006 -0.944 8.694∗∗

st

China 186 1.913 0.079 0.802 -0.090 20.311∗∗∗

Japan 384 4.703 0.144 -0.407 0.265 11.969∗∗∗

South Korea 243 7.025 0.092 -0.196 0.092 1.720

zt

China 186 -0.597 1.152 0.494 -0.657 10.782∗∗∗

Japan 384 -0.396 1.424 0.255 -1.073 22.261∗∗∗

South Korea 243 -0.526 1.020 0.310 -0.890 11.457∗∗∗

Note: JB denotes the Jarque-Bera normality test. ***, ** and * indicate significance at 1%, 5% and 10%level, respectively.

We also explore the stationarity of the series st, pt − p∗t and zt by using four conventional

tests: the GLS modified ADF (DF-GLS) test by Elliott et al. (1996), nonparametric adjusted

zα test (or PP) by Phillips and Perron (1988), structural ZA test by Zivot and K. (1992) and

stationary KPSS test by Kwiatkowski et al. (1992). The results are summarized in Table 8.

We could see that in most cases, the tests suggest the series st, pt − p∗t to be non-stationary

while that zt is stationary.

Table 8: Unit roots test results

DF-GLS PP ZA KPSS

pt − p∗t

China -0.561 −2.684∗ -4.505 2.270∗∗∗

Japan 1.582 -0.975 -3.769 6.298∗∗∗

South Korea -1.232 -1.946 -3.392 1.757∗∗∗

st

China -0.068 -2.504 -3.692 1.590∗∗∗

Japan -1.292 -2.232 -3.212 1.770∗∗

South Korea −3.036∗∗∗ -2.570 -3.766 0.315

zt

China −3.766∗∗∗ −10.740∗∗∗ −7.470∗∗∗ 0.091

Japan −2.045∗∗ −16.654∗∗∗ −6.566∗∗∗ 0.062

South Korea −2.392∗∗ −13.069∗∗∗ −6.984∗∗∗ 0.246

Note: KPSS test is a test statistics for the null hypothesis that the series is stationary while other tests assume

that the series are nonstationary. ***, ** and * indicate significance at 1%, 5% and 10%level, respectively.
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6.3 Estimation Results

In Figure 2, we plot the estimated results for β by our proposed method at three quantile

levels: 0.2, 0.5 and 0.8, representing economy status of recession, normal and prosperity. For

comparison, we also report OLS estimation results. In general, we can find that the estimated

coefficients fluctuate greatly with the change of interest rate spread, and there are significant

differences for the estimated coefficients under different quantile levels.

Specifically, for China, the PPP exchange rate is generally positively correlated with the

nominal exchange rate, consistent with the theoretical prediction of the PPP hypothesis. When

the domestic price index rises relative to the foreign price index, it will put domestic export at

an disadvantage, leading to the decrease of foreign exchange supply and the rise of exchange

rate. We could also find that the variation of cointegration coefficient’s change with zt increases

with quantile levels. When the domestic interest rate spread is significantly higher than foreign

interest rate spread at the high quantile of CNY, the sign of function coefficient is negative

because the capital movements caused by spreads may lead to a fall in the stock market and

property prices, or even a burst of asset bubbles. For JPY, the correlation between the PPP

exchange rate and the nominal exchange rate shows an obvious trend with the change of interest

rate spread. The liberalization degree of the commodity market and the financial market in

open economies, represented by Japan, is much higher than that of China, so the relationship

between interest rate change and exchange rate is further closer. Different from CNY and JPY,

the relationships between the PPP exchange rate and the nominal exchange rate of the KRW

at different quantile levels share a high similarity in the evolution path, and fluctuate around a

fixed level. And in the case of extreme interest rate changes, the positive correlation between

the variables becomes more significant.
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Figure 2: Plots of β̂ against interest rate spread (zt) on the x-axis: OLS v.s. QR estimation.

We report in the results of cointegration test in Table 9, and for comparison, we also report
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the results of SupY test by Xiao (2009b). The results obtained form this two tests are in general

different at different quantiles.

First, we analyse the results for China. we find that SupY test tends to reject the null

hypothesis at upper tail quantile, whereas it cannot reject the null hypothesis at the low quantile

levels. This provides evidence in support of PPP theory only in the the process of exchange rate

appreciation for all the three pairs. By contrats, the results of the MQSC-statistic for CNY/US

pair at different quantiles are not significant at 10% significance level, thus fail to reject the

null hypothesis of cointegration. From the simulation results in Section 5, MQCS test has

better/comparable finite sample performance than/to the SupY test. Moreover, considering

that China has conducted reforms gradually, the results for SupY test may be not reliable as

it assumes a constant cointegration relationship. This suggests that PPP theory is valid for

exchange rate policy-making between China and the United States. The similar pattern can

also be found for KWR/US, except the case when τ = 0.1. In the extreme quantile, the sign of

function coefficient is also contrary to the theory, thus PPP theory is not applicable. Finally,

the MQSC test for Japan and the United States is significant at 1% significance level when

τ ∈ [0.2, 0.4], while it cannot reject the cointegrarion hypothesis in the high quantile levels.

This asymmetric pattern is consistent with the findings of Protopapadakis and Stoll (1986),

which show that the PPP theory is more likely to be held in countries with high inflation rate.

On the one hand, there may be arbitrage opportunities in these countries, but trade barriers

and other factors make speculation difficult to achieve Lucio et al. (2004); On the other hand,

structural factors will also lead to the continuous deviation of nominal exchange rate from PPP,

such as changes in technology and productivity in non trade sectors.

Table 9: Results for the quantile cointegration test

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9

SupY test

China 0.180 0.445 0.812 1.281 1.895∗∗ 2.524∗∗∗ 3.740∗∗∗ 4.559∗∗∗ 4.590∗∗∗

Japan 0.086 0.303 0.721 1.051 2.165∗∗ 3.663∗∗∗ 4.458∗∗∗ 4.712∗∗∗ 4.616∗∗∗

South Korea -0.028 0.020 0.278 0.526 1.152 2.508∗∗∗ 3.638∗∗∗ 4.199∗∗∗ 4.332∗∗∗

MQCS test

China 1.395 3.179 2.936 4.184 2.114 1.985 2.040 2.274 2.373

Japan 1.576 2.087∗∗∗ 2.956∗∗∗ 5.863∗∗∗ 2.302 7.559 2.236 3.240 4.974

South Korea 4.768∗ 3.374 3.747 4.464 3.996 5.411 5.336 6.085 6.499

Note: Critical values for the constant coefficient quantile cointegration test are 1.616, 1.842 and 2.326 from Xiao and Phillips

(2002) .The p-values for functional coefficient quantile cointegration test statistic,MQCS(τ), are computed by 1000 bootstrap

replications. ***, ** and * indicate significance at 1%, 5% and 10%level, respectively.
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7 Conclusion

This paper proposes a generalized quantile cointegrating regressive model for nonstationary time

series, allowing coefficients to be unknown functions of informative covariates at each quantile

level. A local polynomial nonparametric estimator are proposed which is shown to be n
√
h

consistent. Due to endogeneity issue, the proposed estimator suffers from asymptotic bias and

we further propose a “fully modified” estimators, and establish its mixed asymptotic normality.

We also propose two test statistics and study their asymptotic properties for two important

inference problems: parameter (in)stability and null hypothesis of cointegration. Monte Carlo

Simulation results confirm that our proposed tests have good finite sample performance. Finally,

we apply our method in re-examining the PPP hypothesis for three major Asian countries China,

Japan and South Korea against US, and the results are more in favor of the PPP hypothesis in

comparison to other existing method assuming constant relationship. However, at low quantile

levels, the test supports the alternative of no cointegration for Japan and the United States.

Thus the regulatory authority might pay more attention to the downward movement of the

nominal exchange rate when it is in the low level.
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Spokoiny, V., Wang, W., and Härdle, W. K. (2013). Local quantile regression. Journal of

Statistical Planning and Inference, 143(7):1109–1129.

Tu, Y., Liang, H. Y., and Wang, Q. (2021). Nonparametric inference for quantile cointegrations

with stationary covariates. Journal of Econometrics, Forthcoming.

Tu, Y. and Wang, Y. (2019). Functional coefficient cointegration models subject to time–varying

volatility with an application to the purchasing power parity. Oxford Bulletin of Economics

& Statistics, 81(6):1401–1423.

Uematsu, Y. (2019). Nonstationary nonlinear quantile regression. Econometric Reviews,

38(4):386–416.

Xiao, Z. (2009a). Functional-coefficient cointegration models. Journal of Econometrics,

152(2):81–92.

Xiao, Z. (2009b). Quantile cointegrating regression. Journal of Econometrics, 150(2):248–260.

Xiao, Z. and Phillips, P. C. B. (2002). A CUSUM test for cointegration using regression

residuals. Journal of Econometrics, 108(1):43–61.

Yu, K. and Jones, M. C. (1998). Local linear quantile regression. Journal of the American

Statistical Association, 93(441):228–237.

Zivot, E. and K., A. D. W. (1992). Further evidence on the great crash, the oil price shock and

the unit root hypothesis. Journal of Business and Economic Statistics, 10(3):251–270.

35



Appendix A Proofs of Theorems

Proof of Lemma 1

By the defining of ψτ (utτ ) = τ − I(utτ < 0), it is easy to verify that

P (utτ < 0|Ft) = P (ut < F−1(τ)|Ft) = τ,

E[E(ψτ (utτ )|Ft)] = τ − P (utτ < 0|Ft) = 0,

E[E(ψτ (utτ )
2|Ft)] = E[τ 2 − 2τI(utτ < 0) + I(utτ < 0)|Ft] = τ 2 − 2τ 2 + τ = τ(1− τ).

Then, by the Law of Iterated Expectation,

E(ψτ (utτ )) = 0, E(ψτ (utτ )
2) = τ(1− τ).

Further, notice that,

1

nh

n∑
t=1

Ktψτ (utτ )Kt+jψτ (ut+jτ ) =
1

nh

n∑
t=1

ψτ (utτ )
2[K(zt − z)− EK(zt − z)]2

=E

(
E

(
1

nh

n∑
t=1

ψτ (utτ )
2[K(zt − z)− EK(zt − z)]2|Ft

))
=τ(1− τ)

1

h
[EK(zt − z)2 − (EK(zt − z))2]

=τ(1− τ)
1

h

[∫
k2

(
y − z
h

)
f(y)dy −

[∫
k

(
y − z
h

)
f(y)dy

]2
]

=τ(1− τ)fz(z)

∫
k2(u)du+Op(h), if j = 0,

1

nh

n∑
t=1

Ktψτ (utτ )Kt+jψτ (ut+jτ ) =Op(h)
p→ 0, if j 6= 0,

and
1

n

n∑
t=1

vtvt+j
p→ Γv(j).

The desired results in Lemma 1 then follows directly.

Proof of Theorem 1

For simplicity, consider the case for q = 1 and denote β(τ, zt) as β(zt) in a given quantile level,

we then have the following first order approximation for β(zt) at a neighbourhood around the

point z,

β(zt) ≈ β(z) + β(1)(z)(zt − z).
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Let β̃ = β(zt)− β(z)− β(1)(z)(zt − z), u∗t = ut + x′tβ̃, then model (2) could be rewritten as

yt = x′tβ(z) + x′tβ
(1)(z)(zt − z) + u∗t .

Define Xtz = (x′t, x
′
t(zt − z)/h)′ , β(z) =

(
β(z), β(1)(z)

)′
, the above model then could be

simplified as

yt = X ′tzβ(z) + u∗t ,

and the local polynomial estimator of the functional coefficient can be obtained by solving the

problem

min
β

n∑
t=1

ρτ (yt −X ′tzβ(z))K(zt − z), (18)

where K(zt − z) = k

(
zt − z
h

)
.

Denote vn = n
√
h, π0 = vn (β(z)− β(z)) , π1 = vnh

(
β(1)(z)− β(1)(z)

)
, π = (π0, π1)′

and the corresponding estimators π̂0 = vn

(
β̂(z)− β(z)

)
, π̂1 = vnh

(
β̂(1)(z)− β(1)(z)

)
, π̂ =

(π̂0, π̂1)′, then

ρτ

(
yt −X ′tzβ̂(z)

)
= ρτ

{
u∗tτ −X ′tz

(
β̂(z)− β(z)

)}
= ρτ

(
u∗tτ −X ′tz(v−1

n π̂)
)
,

where u∗tτ = yt −X ′tzβ̂(z), and (18) can be further written as

π̂ = arg min
π

n∑
t=1

ρτ
(
u∗tτ −X ′tz(v−1

n π)
)
K(zt − z)

= arg min
π

n∑
t=1

{
ρτ
(
u∗tτ −X ′tz(v−1

n π)
)
− ρτ (u∗tτ )

}
K(zt − z)

:= arg min
π

Hn(π).

Since Hn(π) is a convex stochastic function, Knight (1989) (see alsoPollard (1991)) shows

that if the finite-dimensional distributions of Hn(π) converge weakly to those of H(π),and H(π)

has a unique minimum, then the minimizer of H(π) converges in distribution to that of Hn(π).

Denote ψτ (u) = τ − I(u < 0), if u 6= 0, then by the Knight identity,

ρτ (u− v)− ρτ (u) = −vψτ (u) + (u− v){I(0 > u > v)− I(0 < u < v)}

= −vψτ (u) +

∫ v

0

{I(u ≤ s)− I(u ≤ 0)}ds.
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Thus Hn(π) could be expanded as

Hn(π) =
n∑
t=1

{
−X ′tz(v−1

n π)ψτ (u
∗
tτ ) +

∫ X′tz(v−1
n π)

0

(I(u∗tτ ≤ u)− I(u∗tτ ≤ 0)) du

}
K(zt − z)

= −v−1
n π′

n∑
t=1

XtzK(zt − z)ψτ (u
∗
tτ ) +

n∑
t=1

K(zt − z)

∫ X′tz(v−1
n π)

0

(I(u∗tτ ≤ u)− I(u∗tτ ≤ 0)) du

:= −π′H1n +H2n,

where

H1n = v−1
n

n∑
t=1

XtzK(zt − z)ψτ (u
∗
tτ ),

H2n =
n∑
t=1

ηt(π), ηt(π) = K(zt − z)

∫ X′tz(v−1
n π)

0

(I(u∗tτ ≤ u)− I(u∗tτ ≤ 0)) du.

We first consider the asymptotic property for H2n, Let Yt = K(zt − z), then according to

Assumption 2(iv), we have

0 ≤ ηt(π) ≤ Cv−1
n |X ′tzπ|K(zt − z),

and the conditional expectation of ηt(π)

E (ηt(π)|Ft) = K(zt − z)

∫ X′tz(v−1
n π)

0

∫ r

0

ft

(
s− x′tβ̃ + F−1(τ)

)
dsdr

= Yt

∫ X′tz(v−1
n π)

0

∫ r

0

{
ft

(
s− x′tβ̃ + F−1(τ)

)
− ft(F−1(τ))

}
dsdr

+K(zt − z)

∫ X′tz(v−1
n π)

0

∫ r

0

ft(F
−1(τ))dsdr

= Yt

∫ X′tz(v−1
n π)

0

∫ r

0

{
ft

(
s− x′tβ̃ + F−1(τ)

)
− ft(F−1(τ))

}
dsdr

+
ft(F

−1(τ))

2
K(zt − z)v−2

n (X ′tzπ)2

:= R1t +R2t.
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We now consider the property of
∑n

t=1R1t as n→∞. First, by assumption 2(iv), we have

n∑
t=1

R1t =
n∑
t=1

Yt

∫ X′tz(v−1
n π)

0

∫ r

0

{
ft

(
s− x′tβ̃ + F−1(τ)

)
− ft(F−1(τ))

}
dsdr

≤ C
n∑
t=1

Yt

∫ X′tz(v−1
n π)

0

∫ r

0

|(s− x′tβ̃)|λdsdr

≤ Cv−(λ+2)
n

n∑
t=1

K(zt − z)|X ′tzπ|λ+2

+Cv−2
n

n∑
t=1

K(zt − z)(X ′tzπ)2|x′tβ̃|λ

:= R11t +R12t.

Since xt/
√
n is assumed to be uniformally bounded in Assumption 3(i), |µ2+λ(k)| ≤ ∞ and

nh→∞, we then have

R11t = C(nh)−λ/2
1

n

n∑
t=1

K(zt − z)

h
|X
′
tz√
n
π|λ+2 = Op((nh)−λ/2)

p→ 0.

In addition, under Assumptions 1(i)-(ii) and 2(i), we have

R12t = C
1

n

n∑
t=1

K(zt − z)

h
(
X ′tz√
n
π)2| x

′
t√
n
β̃|λ

≤ C
1

n

n∑
t=1

K(zt − z)

h
(
X ′tz√
n
π)2| x

′
t√
n
|λ|zt − z

h
|2+λ(

√
nh2+λ)

= Op((
√
nh2+λ))

p→ 0.
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We thus have shown
∑n

t=1R1t = op(1), and as a result,

n∑
t=1

E (ηt(π)|Ft) =
ft(F

−1(τ))

2

1

n2h

n∑
t=1

K(zt − z)

(
x′tπ0 + x′tπ1(

zt − z
h

)

)2

+ op(1)

=
ft(F

−1(τ))

2

1

n2h

n∑
t=1

π′0xtx
′
tπ0K(zt − z)

+
ft(F

−1(τ))

2

1

n2h

n∑
t=1

2π′0xtx
′
tπ1(

zt − z
h

)K(zt − z)

+
ft(F

−1(τ))

2

1

n2h

n∑
t=1

π′1xtx
′
tπ1(

zt − z
h

)2K(zt − z) + op(1)

⇒ ft(F
−1(τ))

2
π′0

∫
BvB

′
vπ0 ·

1

nh

n∑
t=1

K(zt − z)

+
ft(F

−1(τ))

2
π′1

∫
BvB

′
vπ1 ·

1

nh

n∑
t=1

(
zt − z
h

)2K(zt − z) + op(1)

⇒ ft(F
−1(τ))

2
π′diag

{
fz(z)

∫
BvB

′
v, µ2

∫
BvB

′
v

}
π + op(1),

where µ2 =
∫
u2k(u)du. Since

0 ≤ E (ηt(π)|Ft) = Yt

∫ X′tz(v−1
n π)

0

∫ r

0

ft

(
s− x′tβ̃ + F−1(τ)

)
dsdr ≤ Cv−2

n Yt(X
′
tzπ)2,

and according to Xiao (2009b), ηt(π)
p→ 0 holds uniformally for all t,

E(η2
t (π)|Ft) ≤ max ηt(π)E(ηt(π)|Ft)

p→ 0,

we then have

H2n =
n∑
t=1

ηt(π)
p→

n∑
t=1

E(ηt(π)|Ft)⇒
ft(F

−1(τ))

2
π′diag

{
fz(z)

∫
BvB

′
v, µ2

∫
BvB

′
v

}
π+op(1).

We now consider the asymptotic property for H1n. Let ξt = XtzK(zt−z) (ψτ (u
∗
tτ )− ψτ (utτ )),

then

H1n = v−1
n

n∑
t=1

XtzK(zt − z)ψτ (utτ ) + v−1
n

n∑
t=1

ξt.
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Similarly, let λt = −x′tβ̃, and the conditional expectation for ξt would be

E(ξt|Ft) = XtzK(zt − z)E (I(utτ ≤ 0)− I(u∗tτ ≤ 0)|Ft)
= XtzK(zt − z)E

(
I(utτ ≤ 0)− I(utτ ≤ −x′tβ̃)|Ft

)
= XtzK(zt − z)

(
Ft(F

−1(τ))− Ft(F−1(τ) + λt)
)

= −XtzK(zt − z)ft(F
−1(τ))λt

= ft(F
−1(τ))Xtzx

′
t(β(zt)− β(z)− β(1)(z)(zt − z))K(zt − z)

= ft(F
−1(τ))Xtzx

′
t(
h2

2
)β(2)(z)(

zt − z
h

)2K(zt − z) + op(1)

= ft(F
−1(τ))Xtzx

′
t(
h2

2
)β(2)(z)(

zt − z
h

)2K(zt − z)

+ft(F
−1(τ))(−Xtzx

′
t(
h2

2
)β(2)(z)(

zt − z
h

)2K(zt − z) + op(1)

= ft(F
−1(τ))Xtzx

′
t(
h2

2
)β(2)(z)(

zt − z
h

)2K(zt − z) + op(1).

Further, according to Liang et al. (2019)

v−1
n

n∑
t=1

[ξt − E(ξt|Ft)] = op(1),

we then have

H1n = v−1
n

n∑
t=1

xtK(zt − z)ψτ (u
∗
tτ )

=
1

n
√
h

n∑
t=1

xtK(zt − z)ψτ (utτ )

+(
h2

2
)β(2)(z)ft(F

−1(τ)) · 1

n
√
h

n∑
t=1

xtx
′
t(
zt − z
h

)2K(zt − z) + op(1).

Under Assumption 2(iii), 3(ii) and by the Functional Central Limit Theorem,[
1√
nh

∑nr
t=1Ktψτ (utτ )

1√
n

∑nr
t=1 vt

]
⇒

[
Bk
ψ(r)

Bv(r)

]
⇒ BM(0,Ω), Ω =

[
ω2
ψ Ωψv

Ωψv Ωvv

]
,

and

1

n
√
h

n∑
t=1

xtK(zt − z)ψτ (utτ ) ⇒
∫
BvdB

k
ψ + λvψ,

where λvψ is the one-side long-run variance-covariance matrix between vt and K(zt−z)ψτ (utτ ).
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Denote µj =
∫
ujK(u)du and based on all above results, we have

π̂0 = vn

(
β̂(z)− β(z)

)
=

(
ft(F

−1(τ))
fz(z)

∫
BvB

′
v

)−1

·H11n + oP (1)

⇒ 1

ft(F−1(τ))

(
fz(z)

∫
BvB

′
v

)−1(∫
BvdB

k
ψ + λvψ

)
+ n
√
h(
h2

2
)β(2)(z)µ2,

which implies

n
√
h
[
β̂(z)− β(z)− B

]
⇒ 1

ft(F−1(τ))

(
fz(z)

∫
BvB

′
v

)−1(∫
BvdB

k
ψ + λvψ

)
,

where B = (h
2

2
)β(2)(z)µ2.

When q > 1, the proof is very similar and the corresponding bias formula is now

B =

(
hq+1

(q + 1)!

)
β(q+1)(z)µq+1.

The proof of Theorem 1 is then completed.

Proof of Theorem 2

First, we decompose Bk
ψ(r) into,

Bk
ψ·v(r) = Bk

ψ(r)− ΩψvΩ
−1
vv Bv(r),

where Bk
ψ·v(r) is a Brownian motion uncorrelated with Bv(r) and its variance is ω2

ψ·v = ω2
ψ −

ΩψvΩ
−1
vv Ωvψ. The asymptotic distribution in Theorem 1 then could be rewritten as

n
√
h
[
β̂(z)− β(z)− B

]
⇒ 1

ft(F−1(τ))

(
fz(z)

∫
BvB

′
v

)−1 ∫
BvdB

k
ψ·v +

1

ft(F−1(τ))

(
fz(z)

∫
BvB

′
v

)−1

×[∫
BvdBvΩ

−1
vv Ωψv + λvψ

]
.
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Since Bk
ψ·v(r) is uncorrelated with Bv(r),

(
fz(z)

∫
BvB

′
v

)−1 ∫
BvdB

k
ψ·v would be a mixed normal

distribution and

n
√
h
[
β̂m(z)− β(z)− B

]
= n

√
h
[
β̂(z)− β(z)− B

]
−

̂̂
ft(F−1(τ))

(
1

n2h

n∑
t=1

xtx
′
tK(zt − z)

)−1

×[
1

n

n∑
t=1

xtv
′
tΩ̂
−1
vv Ω̂ψv + λ̂mvψ

]

⇒ 1

ft(F−1(τ))

(
fz(z)

∫
BvB

′
v

)−1 ∫
BvdB

k
ψ·v

≡ MN

[
0,

ω2
ψ·v

ft(F−1(τ))2

(
fz(z)

∫
BvB

′
v

)−1
]
,

where λ̂mvψ = λ̂vψ − λ̂vvΩ̂−1
vv Ω̂ψv and the proof for Theorem 2 is then complete.

Proof of Theorem 3

Based on the results of Theorem 2, for any zi

V̂ (zi, τ) := n
√
h[β̂m(τ0, zi)− β̂(τ0)] = n

√
h[β̂m(τ0, zi)− β(τ0)] + op(

√
h)

=
1

ft(F−1(τ))

(
1

n2h

n∑
t=1

xtx
′
tK(zt − zi)

)−1(
1

n
√
h

n∑
t=1

xtK(zt − zi)ψτ ·v

)
+ op(

√
h)

⇒ 1

ft(F−1(τ))

(
fz(zi)

∫
BvB

′
v

)−1 ∫
BvdB

k
ψ·v

⇒ MN(0,Ω(τ0, zi)).

Since

E

[
1

h
K

(
zi − z
h

)
K

(
zj − z
h

)]
=

1

h

∫
K

(
zi − z
h

)
K

(
zj − z
h

)
fz(z)dzidzj

⇒ hfz(z)

∫
K(ui)K(uj)duiduj

= O(h)
p→ 0,
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then the covariance of V̂ (zi, τ) and V̂ (zj, τ) is zero and the joint distribution of the kernal

estimator of the distinct points z, i.e.,z1, z2, · · · , zm

n
√
h


V̂ (τ, z1, )

V̂ (τ, z2)

· · ·
V̂ (τ, zm)

 ⇒ MN

0,


Ω(τ, z1) 0 · · · 0

0 Ω(τ, z2) · · · 0

· · · · · · · · · · · ·
0 0 · · · Ω(τ, zm)


 .

giving the required results of Theorem 3.

Proof of Theorem 4

For convenience of asymptotic analysis, we define utτ = yt − Qyt(τ |Ft). QCS(τ) could be

decomposed into two parts:

QCS(τ) =

√
h

n

bnrc∑
t=1

ψτ (ûtτ )

=

√
h

n

bnrc∑
t=1

ψτ (utτ )−
√
h

n

bnrc∑
t=1

[ψτ (utτ )− ψτ (ûtτ )]

:= N1 −N2.

For the first term, by the Functional Central Limit theorem and use the assumption
√
h→ 0,

we have N1 → op(1).

Next we consider the limit of N2. We can show that
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E(N2|Ft) =

√
h√
n

bnrc∑
t=1

E [ψτ (utτ )− ψτ (ûtτ )]

=

√
h√
n

bnrc∑
t=1

E
{

I
[
ut ≤ F−1(τ) + x′t

(
β̂(z)− β(z)

)]
− I
[
ut ≤ F−1(τ)

]}
=

√
h√
n

bnrc∑
t=1

Ft

[
F−1(τ) + x′t

(
β̂(z)− β(z)

)]
− Ft

[
F−1(τ)

]
=

√
h√
n

bnrc∑
t=1

ft
(
F−1(τ)

)
x′t

(
β̂(z)− β(z)

)
+

√
h√
n

bnrc∑
t=1

ft
(
F−1(τ)

)
[−]x′t

(
β̂(z)− β(z)

)
+ op(1)

= F
(
F−1(τ)

) 1

n
√
n

bnrc∑
t=1

x′tn
√
h
(
β̂(z)− β(z)

)
+ op(1)

⇒
(∫

B′v(s)ds

)(∫
Bv(s)B

′
v(s)ds

)−1(∫
Bv(s)B

k
ψ(s)ds+ λvψ

)
.

We can also show V ar(N2) = op(1).

Note that the variance ofN2 mainly depends on

√
h√
n

∑bnrc
t=1 [ψτ (utτ )− ψτ (ûtτ )]. Define M1t =

min
{
F−1(τ) + x′t

(
β̂(z)− β(z)

)
, F−1

}
, M2t = max

{
F−1(τ) + x′t

(
β̂(z)− β(z)

)
, F−1

}
, and

Ht = I
[
ut ≤ F−1(τ) + x′t

(
β̂(z)− β(z)

)]
− I [ut ≤ F−1(τ)], thus for any positive integer m,

|Ht|m = I(M1,t < ut < M2,t). Therefore

V ar(N2) = V ar

 1√
n

bnrc∑
t=1

Ht

 ≤ V ar

(
1√
n

n∑
t=1

Ht

)

= V ar(H1) + 2
n−1∑
j=1

(
1− j

n

)
Cov(H1, Hj+1),

where

V ar(H1) ≤ E(H1)2 = E [I(M1,1 < u1 < M2,1)] = Op(v
−1
n ) = op(1),
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n−1∑
j=1

(
1− j

n

)
Cov(H1, Hj+1) ≤

n−1∑
j=1

(
1− j

n

)
|Cov(H1, Hj+1)|

≤
λn−1∑
j=1

|Cov(H1, Hj+1)|+
n−1∑
j=λn

|Cov(H1, Hj+1)|

:= J1 + J2.

For J1, apply the Cauchy-Schwarz inequality,

|Cov(H1, Hj+1)| = |E(H1Hj+1)|

≤
√
E|H1|2

√
E|Hj+1|2

=
√
E [I(M1,1 < ut < M2,1)]

√
E [I(M1,j+1 < uj+1 < M2,j+1)]

= Op(v
−1
n ),

where in the first equality, we use E(H1) = E
(
F (F−1(τ))x′1

(
β̂(z)− β(z)

))
= op(1). Thus

J1 = Op(λnv
−1
n ).

For J2, apply the assumption 3(ii) and covariance inequalities for mixing sequences,

J2 =
n−1∑
j=λn

|Cov(H1, Hj+1)|

≤
n−1∑
j=λn

Cα1−δ/2(j){E|H1|δ}1/δ{E|Hj+1|δ}1/δ

= Cv−2/δ
n

n−1∑
j=λn

α1−δ/2(j)

≤ Cv−1
n (v1−2/δ

n λ−γn )
n−1∑
j=λn

j−γα1−δ/2(j),

where δ ≥ 2, γ ≥ 1− δ/2. Through choosing an appropriate λn such that v
1−2/δ
n λ−γn = C,C is

a positive constant, then λnv
−1
n → 0.

As a result, we have

J1 = Op(λnv
−1
n ) = op(1),

J2 = Op(v
−1
n ) = op(1),

V ar(N2) = op(1) + J1 + J2 = op(1).

Therefore,

N2
p→ E(N2|Ft)

⇒
(∫

B′v(s)ds

)(∫
Bv(s)B

′
v(s)ds

)−1(∫
Bv(s)B

k
ψ(s)ds+ λvψ

)
,
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and then

QCS(τ)⇒ −
(∫

B′v(s)ds

)(∫
Bv(s)B

′
v(s)ds

)−1(∫
Bv(s)B

k
ψ(s)ds+ λvψ

)
.

Define the modified quantile residuals ûmtτ = yt − βm(z)xt, then the modified statistics can

be written as

MQCS(τ) =

√
h

n

bnrc∑
t=1

ψτ (û
m
tτ )

=

√
h

n

bnrc∑
t=1

ψτ (utτ )−
√
h

n

bnrc∑
t=1

[ψτ (utτ )− ψτ (ûmtτ )]

:= M1 −M2.

Using the same argument as proving N1 → op(1)., we have M1 → op(1).

Next we consider the asymptotic behavior of M2. Similar to the proof of N2,

M2
p→ E(M2|Ft)

=

√
h√
n

bnrc∑
t=1

E [ψτ (utτ )− ψτ (ûmtτ )]

=

√
h√
n

bnrc∑
t=1

Ft

[
F−1(τ) + x′t

(
β̂m(z)− β(z)

)]
− Ft

[
F−1(τ)

]
= F

(
F−1(τ)

) 1

n
√
n

bnrc∑
t=1

x′tn
√
h
(
β̂m(z)− β(z)

)
+ op(1)

⇒
(∫

B′v(s)ds

)(∫
Bv(s)B

′
v(s)ds

)−1(∫
Bv(s)B

k
ψ·v(s)ds

)
Finally, re-standardize both Bk

ψ·v(r) and Bv(r). Let W k
ψ·v(r) = ω̂−1

ψ·vB
k
ψ·v(r), Ω̂

−1/2
vv Wv(r) =

Bv(r), then√
h

n

bnrc∑
t=1

ψτ (û
m
tτ )⇒ −ω̂−1

ψ·v

(∫
W ′
v(s)ds

)(∫
Wv(s)W

′
v(s)ds

)−1(∫
Wv(s)W

k
ψ·v(s)ds

)
This concludes the proof.

Appendix B Supplementary Simulation Results
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Table 14: Empirical size and power of MQCS, (n = 200,M = M2, p = 2.).

ρ = 0.5 ρ = 0.8

N(0, 1) t(2) t(4) N(0, σt) N(0, 1) t(2) t(4) N(0, σt)

β(ut, zt) = 1

γ = 0.0 0.036 0.020 0.064 0.042 0.060 0.028 0.068 0.056

γ = 0.2 0.048 0.042 0.070 0.062 0.060 0.030 0.074 0.106

γ = 0.4 0.074 0.048 0.074 0.080 0.088 0.034 0.108 0.070

γ = 0.6 0.120 0.046 0.092 0.076 0.114 0.038 0.100 0.108

γ = 0.8 0.084 0.044 0.122 0.176 0.104 0.064 0.092 0.122

γ = 1.0 0.892 0.790 0.854 0.830 0.872 0.832 0.860 0.694

β(ut, zt) = sin
(√

2πzt
)

γ = 0.0 0.040 0.042 0.046 0.032 0.028 0.050 0.018 0.048

γ = 0.2 0.036 0.046 0.030 0.058 0.032 0.046 0.034 0.036

γ = 0.4 0.066 0.076 0.046 0.044 0.060 0.084 0.068 0.060

γ = 0.6 0.086 0.070 0.086 0.078 0.060 0.066 0.100 0.090

γ = 0.8 0.202 0.178 0.198 0.220 0.154 0.200 0.188 0.210

γ = 1.0 0.848 0.886 0.874 0.784 0.898 0.882 0.870 0.722

β(ut, zt) = [0.5 + Φ(ut)]cos
(√

2πzt
)

γ = 0.0 0.066 0.062 0.072 0.072 0.070 0.068 0.076 0.056

γ = 0.2 0.072 0.048 0.054 0.048 0.066 0.066 0.064 0.060

γ = 0.4 0.064 0.060 0.068 0.080 0.094 0.060 0.064 0.072

γ = 0.6 0.082 0.074 0.086 0.072 0.092 0.064 0.116 0.090

γ = 0.8 0.106 0.116 0.082 0.102 0.132 0.100 0.116 0.186

γ = 1.0 0.828 0.822 0.844 0.716 0.832 0.852 0.856 0.672

Note: The MQCS is our proposed test. We use nonparametric local polynomial estimator here (i.e. p=2).

52


	Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression
	Introduction
	Functional Coefficient Quantile Cointegrating Model
	Asymptotic distribution of the estimator 
	Inference 
	Testing for stability of the cointegrating vector
	Test for cointegration 

	Monte Carlo simulation
	Test for Parameter Stability
	Test for cointegration
	Test at Median Quantile
	Tests on various quantiles


	An empirical application to PPP
	Background
	Data and Preliminary Statistical Analysis
	Estimation Results

	Conclusion
	Proofs of Theorems
	Supplementary Simulation Results

