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Abstract

What is the impact of granular credit risk on banks and on the economy? We

provide the first causal identification of single-name counterparty exposure risk in

bank portfolios by applying a new empirical approach on an administrative matched

bank-firm dataset from Norway. Exploiting the fat tail properties of the loan share

distribution we use a Gabaix and Koijen (2022a,b) granular instrumental variable

strategy to show that idiosyncratic borrower risk survives aggregation in banks’ port-

folios. We also find that this granular credit risk spills over from affected banks to

firms, decreases investment, and increases the probability of default of non-granular

borrowers, thereby sizeably affecting the macroeconomy.

†We thank Emi Nakamura (the editor) and anonymous referees for valuable suggestions that have
substantially improved the paper. We are grateful to our discussants Sebastian Doerr, Ralph Koijen,
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1 Introduction

What is the impact of idiosyncratic borrower risk on banks and the economy? It has
been understood for years that if individual loans are small enough relative to the overall
size of the portfolio then credit risk pooling should achieve perfect insurability against
idiosyncratic shocks (Diamond, 1984). But what if some loans are large? What if the
distribution of loan sizes is fat-tailed: can the performance of a single large loan directly
affect portfolio-level outcomes and lending? A rapidly growing literature, originating
from the seminal contribution by Gabaix (2011), has emphasized the micro - or “granular”
- origins of macroeconomic outcomes in a variety of theoretical and applied contexts.
According to the granular hypothesis, shocks to large, non-atomistic agents generate
non-diversifiable “grains” of economic and financial activity, which can directly affect
aggregate fluctuations and, via general equilibrium effects, all other agents.

Curiously, there are few empirical applications of the granular hypothesis to banking.
This is puzzling because in practice the hypothesis maps directly into “large exposure
regulation” of the Basel Committee on Banking Supervision (BCBS). The BCBS has been
regulating bank credit concentration risk for decades, formally at least since the Basel I
Accords. The Core Principles for Effective Banking Supervision emphasize that local country
laws should “set prudent limits on large exposures to a single borrower” (BIS, 2013). In
practice however, the Principles admit that “material differences in scope of application,
the value of large exposure limits, methods for calculating exposure values, and more
lenient treatments for certain types of exposures exist”. As a result, the document con-
cludes, “although a concentration risk adjustment could be made to mitigate these risks,
these adjustments are neither harmonised across jurisdictions, nor designed to control
traumatic losses from a single counter-party default”.

This paper is the first to provide causal empirical evidence on the importance and
implications of “single-name” credit concentration risk1. We develop a new empirical
approach and apply it to a novel administrative firm-bank matched dataset from Norway2.
We merge our loan-level administrative database with firm and bank balance sheet data.
We cover every single bank loan made to limited liability companies (LLC) in Norway over
the 2003-2015 period3. This data-rich environment enables us to study the transmission

1We follow the BCBS vocabulary where “single-name”refers to the level of an individual borrower or
counterparty. This is in contrast, for example, to how BCBS defines and treats sectoral or geographical
exposures where the unit of analysis is either a whole industry or region.

2Throughout the paper we focus on corporate clients and loans. Our empirical approach however, is
general and flexible enough to be applied to other borrower types such as households, state institutions, or
other intermediaries.

3LLC is by far the most commonly used organizational structure in Norway. For most years, our firm
data accounts for more than 90% of total employment in the private sector.
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mechanism and heterogeneous treatment effects at many levels of aggregation.
Our empirical strategy consists of five steps. First, we establish that the distribution

of loan shares in our dataset is fat-tailed. Our estimate of the Pareto power implies that
80% of all credit is concentrated in 20% of the loans. Interestingly, we provide therefore
another example of the famous “80-20” Pareto principle that occurs in a variety of settings
in economics as well as more generally in social and physical sciences (Gabaix, 2009).

Second, we construct a measure of idiosyncratic borrower risk. We use data on firm
balance sheets and income statements to estimate idiosyncratic value-added shocks for
the universe of all LLC firm × years in Norway over 2003-2015. We extract non-systematic
variation in firm value-added by controlling for a variety of balance sheet items like
firm size and costs as well as firm, industry, year, and geographical fixed effects. Our
approach follows very closely a large literature in labor economics and macroeconomics
(Guiso et al., 2005; Hsieh and Klenow, 2009; Fagereng et al., 2018). An example of such
an idiosyncratic shock in our sample is the closure of the main waste management facility
of the company Hera Vekst by the authorities because of “smell far in excess of what the
local population should tolerate” (nrk.no, 2011).

Third, we establish the pass-through from these idiosyncratic firm shocks to loan-level
returns.4 We investigate how such shocks affect returns on loans within the same bank,
industry, county, year, and loan type.5 Importantly, our specification controls for time-
varying confounding bank-side supply factors, potentially specific to a given industry,
county, or contractual type.6 We find that idiosyncratic firm shocks have a strong effect
on loan returns. In our preferred specification with a full set of controls and fixed effects,
a one standard deviation negative firm shock causes annual loan-level returns to fall by
34-36 basis points. We explore numerous dimensions of heterogeneity, including firm
characteristics, geographical location, ownership, etc.

Fourth, we look at the impact of idiosyncratic borrower shocks on banks’ portfolio-level

4This step constitutes one of the key ways in which we differ from the contribution by Amiti and
Weinstein (2018). Amiti and Weinstein (2018) provide a decomposition of investment growth in Japan into
idiosyncratic bank x time and firm x time components. They show that the idiosyncratic bank-side factor,
driven particularly by granular banks, matters a lot for aggregate investment dynamics. In contrast, we
estimate the pass-through of estimated idiosyncratic performance shocks hitting granular borrowers onto loan,
bank, and macroeconomic outcomes.

5Conceptually, this step can be viewed as a “reverse Khwaja and Mian (2008)” approach. In Khwaja
and Mian (2008), authors trace out the impact of bank supply shocks for the same firm borrowing from
different banks. This way, they are able to control for any confounding firm-side factors. Our strategy is to
compare loan outcomes within the same bank in order to control for supply-side factors. Our approach is
very “granular” since we zoom in on firms not only within the same bank but also within the same industry
and county.

6Our saturation of specifications with time × bank and other fixed effects is similar to Jimenez et al.
(2014) who study monetary policy and loan applications of the same firm to different banks in the same
period of time.
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outcomes. This is a critical step in our analysis. Once aggregated to the level of a bank, we
potentially lose the appealing properties of loan-level analysis: the loan share-weighted
firm shock series could be contaminated by bank × year confounding factors which we no
longer have the power to deal with7. For this stage, we adopt the “Granular Instrumental
Variable” (GIV) approach, newly developed in a series of papers by Gabaix and Koijen
(2022a,b). Intuitively, the GIV extracts variation in the share-weighted aggregated firm
shock series that can be attributed to “granular” borrowers. Specifically, the instrument
in its simplest form is the difference between size-weighted and unweighted aggregated
firm shocks. The GIV thus purges away any bank × year factor. Conditional on the
distribution of credit shares being fat-tailed, idiosyncratic shocks to large borrowers allow
us to achieve identification and validity. Our various parameteric and non-parameteric
specifications allow for a flexible number of bank factors and, importantly, for loadings
on bank factors to be either homogenous or heterogeneous across firms within any bank’s
portfolio.

One important result of our paper is that idiosyncratic firm shocks, instrumented by
the GIV, have a large and significant effect on portfolio-level return on loans (RoA). A
one-standard-deviation granular credit shock causes portfolio RoA to move by 11.6 basis
points on average. Given that in the estimation sample the standard deviation of RoA is
1.35, our estimate can explain 8.6% of the total dispersion of bank returns. We also find that
the relationship is strongly concave, driven mainly by negative shocks. In particular, if we
condition on positive share-weighted shocks, the estimated coefficient becomes a noisy
zero. In contrast, when conditioning on negative share-weighted shocks, the estimate
jumps to as high as 19.4 basis points, which is 15% of the sample standard deviation of
RoA - an increase of 74% over the average estimate8. We investigate heterogeneity at the
bank level and find that the pass-through of granular credit shocks is stronger for banks
with high portfolio risk weights, low assets, high loan portfolio concentration, and high
profitability. We also find that the number of loans in credit portfolios does not affect the
transmission mechanism, indicating that granular credit risk is not merely a “small-N”
problem.

Fifth, having established that shocks to granular borrowers have a direct effect on

7In recent work, Jimenez et al. (2020) extend the Khwaja and Mian (2008) loan-level estimator to firm-level,
thus offering a way to achieve identification despite aggregation. We pursue a novel and complementary
approach that exploits the fat tail of the loan share distribution.

8The concave relationship is reassuring to us for the simple reason that it reflects the basic payoff structure
of the debt contract. While there is no upside for the lender from borrowers experiencing positive value-
added shocks, the downside is capped only by the principal of the loan, not counting default-related costs,
be they pecuniary or not. Apart from the intuitive economic interpretation, we also view our finding of
strong asymmetric effects as an important sign of validation that our measure of idiosyncratic shocks is
indeed economically informative.
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portfolio-level returns, we ask whether banks pass on these shocks to the real economy.
In other words, are there macroeconomic spillovers from granular credit risk?9 We start
by examining credit supply effects, by comparing bank loan quantity and rate changes in
response to granular credit shocks. We restrict the sample to firms with multiple bank
relationships and ask if banks that experience bad granular credit outcomes reduce credit
supply or increase interest flows. Within-firm analysis allows us to control for demand-
side effects using time-varying firm fixed effects, thus isolating the supply side. We find
strong evidence, both in terms of quantity and price effects, that banks pass on granular
credit shocks to their non-granular clients, i.e. firms with a loan share that is less than a
certain threshold (such as the median) in the pooled distribution of all credit shares10. We
show that a one-standard-deviation bank-level negative granular credit shock reduces
loan supply and increases interest flows by as much as 23% and 17%, respectively, of
the dependent variables’ standard deviations. This identifies a leftward shift of the credit
supply curve: quantities fall while prices rise11. There are “granular credit risk spillovers”:
idiosyncratic borrower shocks spill over to other firms that borrow from the same bank.12

We then ask whether affected non-granular firms experience negative real economic
outcomes. We find that affected non-granular firms cut investment. Moreover, these firms
experience significantly elevated bankruptcy rates. A one-standard deviation negative
granular credit supply shock increases the likelihood of bankruptcy by roughly 3%-9%
over the unconditional probability of bankruptcy of 1.10% per annum, or 3-10 basis points
p.a.. Granular credit risk has sizable implications for the aggregate economy, and our back-
of-the-envelope calculations suggest that it results in tens of millions of dollar-equivalent
bankruptcy-associated losses every year.

An important question is whether banks hedge granular risk with alternative sources of

9For example, negative granular credit shocks could be perceived as sudden and detrimental changes to
the banks’ financial positions, which in turn translate into adverse lending and pricing decisions (Paravisini,
2008).

10The tendency to pass along adverse economic shocks to their clients, especially small firms, is not
uncommon for banks. In their classic paper, Peek and Rosengren (2000) find that the 1990s Japanese
banking crisis had a negative effect on commercial real estate activity in the U.S. through the network
of banks exposed to both markets. Klein et al. (2002) further document that unequal access to credit by
Japanese firms during the 1990s led to the decline in the number of FDI projects by the same firms into the
United States. Lin and Paravisini (2012) trace out the pass-through of the collapse of WorldCom on firms
that shared the same lender. In a recent paper, Greenwald et al. (2020) show that banks that experience
larger credit line drawdowns restrict lending to firms that borrow through term loans - a negative spillover
effect on smaller borrowers.

11We find some heterogeneity according to bank characteristics: spillovers to interest rate flows tend to
be larger for banks which are less capitalized although the estimates are very imprecise.

12It is possible that our spillover result is in part driven by production network linkages, i.e. granular
and non-granular borrowers are linked not only via the balance sheet of their common lender but through
some other channel as well. We account for these potential production network effects with the use of the
Norwegian input-output table and find that our results do not change.
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income. For example, in states of the world where credit income is low derivative income
could be high. We collect detailed bank-level data on non-interest income and find that
none of the measures we have correlate with GIV-instrumented firm shocks. We see no
correlation between our shock measures and fees income, equity and bond appreciations,
dividend income, or derivatives income. Another issue is that banks could potentially
pre-insure against granular borrower shocks by charging higher interest markups for risky
clients. Unfortunately, despite the precautions we take and the robustness checks we run,
properly accounting for ex-ante compensation of granular credit shocks is difficult in our
setting due to data limitations and lack of access to contract-level information. Empirical
designs that leverage contract- or application-level data, such as the influential work of
Jimenez et al. (2014), are better equipped at addressing this concern.

How valid are our methodology and results externally? Baena et al. (2022) apply a
variant of our approach to the Anacredit database and find very similar results in the
context of French credit registry data. Our tractable approach is thus easily applicable to
a general class of empirical settings that rely on bank-firm linkages. In addition to the
above, to what extent is credit portfolio concentration a uniquely Norwegian phenomenon
or a ubiquitous feature of financial markets? We discuss at great length how portfolio
concentration appears to be indeed very common across various countries and asset
classes. We also ourselves document the degree of portfolio concentration for a completely
different but important setting: equity holdings of US institutional investors. We find that
concentration in the Norwegian corporate credit sector is quantitatively very similar to
the universe of U.S. equity investors. Our analysis concludes that both the methodology
and results are applicable to many other situations and environments.

Finally, we end the empirical analysis by quantifying the implications of our findings
for aggregate outcomes and explore several counterfactual scenarios. We show that
granular credit shocks account for 8 % to 20 % of the total variation in credit growth to
smaller firms that is attributed to generic bank supply factors. This illustrates that granular
credit shocks constitutes an important part of the time-varying credit supply to smaller
firms. While not making any normative conclusions, we also show that a reallocation of
exposures to granular credit risk could substantially reduce volatility in bank returns and
spillovers to other firms. For instance, allocating credit to mimic a representative bank
serving the full corporate sector would reduce the impact of granular credit risk on bank
returns by 66 %, ceteris paribus.

Literature Review Our paper relates to several literatures. First, it builds on the rapidly
growing literature on the “granular hypothesis” and its applications. Some of the more
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salient contributions across fields range from papers on business cycles (Carvalho and
Gabaix, 2013), to trade (Gaubert and Itskhoki, 2021), international finance (di Giovanni
et al., 2018), asset management (Choi et al., 2017), life insurance (Chodorow-Reich et
al., 2021), exchange rates (Camanho et al., 2022), banking (Bremus et al., 2018; Kundu
and Vats, 2021). In important work, Amiti and Weinstein (2018) develop a methodology
that decomposes loan growth into time-varying bank supply and firm demand compo-
nents and find that idiosyncratic bank supply fluctuations, particularly those of granular
lenders, have a large impact on aggregate lending and investment in Japan. In contrast
to Amiti and Weinstein (2018), we estimate idiosyncratic firm performance shocks and
study how these shocks transmit to bank outcomes and the real economy. We contribute
to the “granular hypothesis” literature by showing that, when the loan distribution is fat
tailed, idiosyncratic performance shocks to granular borrowers do not wash out at the
lender’s portfolio level. We also study spillovers of granular credit shocks on the rest of
the economy by tracing out how affected banks pass on granular credit risk to other firms.

Second, we relate to the literature studying the trade-off between credit concentra-
tion and diversification. On the one hand, diversification enhances credit monitoring
and information provision capacity (Diamond, 1984; Boyd and Prescott, 1986). Recently,
Doerr and Schaz (2021) have shown that geographically diversified banks not only lend
more during local crises in their borrower countries, but also mitigate the transmission of
such shocks to borrowers in other countries. On the other hand, some empirical studies
found a positive correlation between portfolio concentration, returns, and monitoring
efficiency (Acharya et al., 2006). Beck et al. (2017) have shown that bank specialization
and concentration potentially have positive implications for systemic financial stability.
Our paper contributes to this debate. We argue that as long as the distribution of credit
shares features a fat tail, banks remain exposed to idiosyncratic shocks to their (granular)
borrowers. Everything else equal, this is detrimental for financial stability. Because we
find that banks pass on granular credit shocks to the real economy, credit concentration
induces negative economic outcomes on average, ceteris paribus. But a normative inter-
pretation of our results depends on the precise theories generating loan concentrations in
the first place, an issue we discuss in detail in section 5.4.

There is an emerging new literature on credit concentration that, like us, takes ad-
vantage of detailed microeconomic data. Agarwal et al. (2020) find that Mexican banks
that specialized in energy lending around the 2014 collapse of energy prices amplified
the sectoral shock to the rest of the real economy. Paravisini et al. (2020) find that per-
sistent bank market-specific specialization can explain a significantly larger fraction of
within-firm variation in credit than actual bank supply shocks. Goetz et al. (2016) show
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that geographic diversification by banks has no impact on average loan quality and is
associated with a reduction of exposure to local idiosyncratic risks. Finally, Huremovic et
al. (2020) and Dewachter et al. (2020) study the role of production networks in Spain and
Belgium, respectively, for the propagation of bank shocks. Our paper differs from this
literature because we work explicitly with single-name concentration risk, while most of
the literature deals with either sectoral or geographical specialization. In addition, we em-
phasize both empirically and theoretically the importance of granularity of the loan share
distribution for the pass-through of idiosyncratic shocks to the aggregate bank portfolio.
Thus our paper provides an empirical basis for the work of Mendicino et al. (2020) who
show in a quantitative model that if banks are not perfectly diversified, the interaction
between borrowers’ and banks’ solvency has important effects on the probability and
severity of crises.

The remainder of the paper is structured as follows. Section 2 provides a description
of our data. Section 3 describes the different stages of our empirical approach. Section 4
reports the main empirical results. Section 5 summarizes additional results and offers a
discussion of relevant conceptual questions. Section 6 concludes. All of our supplemen-
tary results and robustness tests are listed and discussed in the Online Appendix.

2 Data

Our empirical investigation is based on a unique dataset assembled from three major
sources: administrative data from the Norwegian Tax Authority, credit rating agency data
from Bisnode and supervisory data from ORBOF. They were merged using the unique
identifiers for banks and firms. The Norwegian Tax Authority data is a high-quality
matched firm-bank administrative register. The unit of observation in this database is an
individual loan and the frequency is annual. For every loan, we observe the firm-bank
identifiers as well as the flow of interest paid during the year and the end-of-year stock
of debt.1314 Because the data is collected and maintained by the tax authority as a basis
for corporate taxation, the variables are essentially measurement error-free.15 The data
set covers all limited liability companies for the time period of 2003-2015, which accounts
for roughly 90% of private sector employment for most years. We aggregate all loans into

13We do not observe the contracted interest rate nor the loss-given-default on individual loans, but use
our data to construct an ex-post return on each loan.

14Loans to firms constitute around 40 % of all bank loans at the beginning of our sample period.
15Provision of false tax information carries substantial legal, financial and reputational penalties. Addi-

tionally, the information about outstanding debt and interest paid is reported to the tax authority by the
banks, and not the firms themselves.
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a single annual firm-bank “relationship” unit. The terms loan and relationship are used
interchangeably, and refer to the sum of loans and interests paid across all individual
loans between a bank and a firm.

A key measure in our analysis is the return on a loan, or a credit relationship (RoL). This
is not directly observed, and hence we impute it. Specifically, we observe interest collected
throughout year t (Rt) and the end-of-year stock of outstanding debt (Dt). We then define
the RoL in year t as Rt/(0.5Dt−1 + 0.5Dt), which is equivalent to interest received relative
to the average of debt outstanding at the beginning and end of the calendar year.

We merge the loan-level data with detailed information on Norwegian firms and banks.
Our firm data comes from the credit rating agency Bisnode. In addition to information
about the firms’ credit rating scores and firm characteristics such as age, location and
industry, the data set includes annual balance sheet and income statement items on all
Norwegian firms for 1999-2019. The bank data is from a supervisory registry (ORBOF) and
includes annual balance sheet and income statement information covering all Norwegian
banks over 1987-2019. The data set also provides us with confidential information on
non-interest income, including income from derivatives, equity and bond investment,
dividends, and loan fees.

We perform several cleaning and truncation steps on the raw data. First, we drop
observations that are clearly erroneous, such as cases of liquidity ratios being greater than
1. Second, following Foster et al. (2008) we truncate the distribution of cost-to-total-cost
ratios for each cost type at the 10% and 90% in each industry and year. Cost types include
wage bill, energy, material and other costs. This is important as firms could dump all
their operational costs to a particular fiscal year in order to receive tax advantages, and
what we would thus pick up are in fact endogenous outcomes rather than unanticipated
performance shocks. Third, we truncate the extracted firm shock distribution at the 1%
and 99% levels. All our main results at the loan and bank levels are quantitatively robust
to alternative cleaning rules. Table 1 provides summary statistics for some of the key
variables used in our analysis.
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Table 1: Descriptive Statistics

Variable Observations Mean Std. Dev Min Max

Loans

Interest Received 333289 196645.31 1620919.78 1.00 2.67e+08
Loan Amount Outstanding 333289 4035259.25 43884811.59 1.00 7.00e+09
Return on Loan (%) 333289 9.01 8.92 0.00 100.00

Firms

Sales (1000 NOK) 277707 26532.69 217768.69 0.00 33761000.00
Total Assets (1000 NOK) 277707 42361.08 1052017.18 2.00 1.20e+08
Wage Costs (1000 NOK) 277707 6827.88 65057.01 1.00 7098000.00
Material Costs (1000 NOK) 277707 11643.95 103640.10 0.00 15313000.00
Equity / Assets Ratio 277707 0.27 0.18 0.00 1.00
Liquidity Ratio 277707 0.16 0.17 0.00 1.00
Employees 277707 15.81 156.66 0.00 20781.00
Firm Age (years) 277707 12.94 11.81 0.00 159.00

Banks

Return on Loans (%) 1380 6.40 1.46 0.06 14.39
Total Assets (1000NOK) 1377 21130037.71 1.35e+08 92384.00 1.96e+09
Total Equity (1000NOK) 1377 1491611.98 8512785.73 16139.00 1.51e+08
Assets / Equity Ratio 1377 10.90 3.20 1.32 41.48
Cash Balances / Assets 1377 0.03 0.03 0.00 0.33
Number of Loans 1380 220.88 854.18 1.00 8940.00
Loan Herfindahl Index 1380 0.10 0.12 0.00 1.00
Share of 10% Largest Loans 1380 0.54 0.13 0.20 1.00
Share of 5 Largest Loans 1380 0.51 0.20 0.07 1.00
Deposits to Assets Ratio 1377 0.66 0.12 0.01 0.91
Financial Assets Ratio 1321 0.08 0.06 0.00 0.48

Firm Performance Shocks

Firm-level 277707 0.02 0.27 -1.42 1.15
Bank-level (loan-share-weighted) 1380 -0.02 0.11 -0.78 0.69
Granular IV 1380 -0.02 0.09 -0.76 0.46

Notes: This table shows summary statistics of key loan, firm, and bank characteristics. All stock and earnings values are in thousands
of Norwegian Kronas (NOK). 1 US Dollar = 9.93 NOK as of December 5, 2022. Firm shocks are estimated according to specification 2.
Loan data is from the Norwegian Tax Authority. Firm data is from the credit rating agency Bisnode. Bank data is from the financial
supervisory database ORBOF. Sample includes all bank loans to limited liability companies in Norway over 2003-2015.
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Figure 1: Granularity in the Distribution of Bank Loan Portfolios
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Notes: This graph presents the distribution of bank loan shares. The left panel plots the full distribution. The right panel zooms in on
the 95th percentile. The share of each loan is computed as the ratio of a singular loan’s amount to total corporate loans of a given bank
in a given year. The figures plot the pooled shares for all banks and years. The Pareto rate of the 95th percentile is 1.15.

3 Empirical strategy

3.1 Granularity of the Distribution of Loan Shares

We begin by establishing that the distribution of loans shares in our dataset is fat-tailed.
In Figure 1 we plot the histogram of all loan shares, pooled across all banks and years
over 2003-2015. Eyeballing the distribution is enough to notice its extreme skewness.16

More formally, we fit the Pareto I density to the right tail of the distribution, defined as
the 95th percentile and plotted on Panel (b), and estimate a Pareto rate of 1.82.17 If defined
by the 99th percentile, the estimate drops to 1.15. Any estimate below 2 implies that
idiosyncratic shocks to large loans potentially survive risk pooling and cause portfolio-
level disturbances.

Second, we plot the distribution of excess loan portfolio Herfindahls (eHHI), pooled
across all banks and years. The eHHI is defined as:

eHHIi,t =

√∑
j

s2
i, j,t −

1
Ni,t

(1)

with si, j,t the loan share of firm j in bank i’s portfolio in year t, and Ni,t the number of
loans in the respective portfolio. A greater eHHI implies higher concentration. Given the
level and right-skewness of the resulting histogram, there is strong evidence bank loan
portfolios are considerably concentrated,

16This is also true if we focus on bank-level distributions of portfolio shares irrespective of bank size.
17One concern is that pooling observations across years may bias the estimate upwards. If we constrain

the sample to the year 2015, the Pareto rate falls to 1.75.
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Overall, given the degree of portfolio concentration in our data it is not implausible
to suspect that loan-level disturbances do not average out in the aggregate. We will be
returning to this point during the discussion of our instrumental variable approach below,
particularly when discussing the validity of our instrument. Interestingly, our estimates
imply that roughly 80% of all credit is concentrated in 20% of the loans. Thus, the loan
share distribution provides yet another example of the famous “80-20” Pareto principle
that occurs in a variety of settings in economics as well as in many social and physical
sciences applications (Gabaix, 2009).

A Simple Model of Granular Credit In Appendix G, we introduce a parsimonious
model of bank credit into the canonical framework of Gabaix (2011). In our model, the fat
tail of the firm size distribution feeds directly into the fat tail of the loan share distribution
under certain parameter restrictions. We estimate the main parameters of the model using
our data and confirm that those restrictions are on average satisfied.

3.2 Estimates of Idiosyncratic Firm Shocks

The next step of our empirical approach consists of extracting idiosyncratic firm shocks,
measured as unexplained idiosyncratic variation in firm value-added. Our approach
follows closely a large number of studies in labor and macro economics that extract
idiosyncratic sales or performance shocks. (Foster et al., 2008; Hsieh and Klenow, 2009;
di Giovanni et al., 2014; Foster et al., 2017; Fagereng et al., 2018).18 To extract unexplained
variation in firm value added, we regress (the log of) firm value added on a set of time-
varying firm-level controls that includes measures of input usage and firm riskiness.
Importantly, since our focus is on idiosyncratic variation, we remove common (across
firms) components by controlling for the interaction of time, industry and county fixed
effects. Finally, across-firm variation attributed to time-invariant firm characteristics is
absorbed by firm fixed effects.

Formally, for a firm j, operating in an industry s from a county z in year t, we estimate
the following regression:

ln VA j,t = α j + θg( j),t + β1 ln K j,t + β2 ln W j,t + λ
′Xj,t + ϵ j,t (2)

where VA stands for firm value-added, K represents book capital, W the wage bill, and X
are other controls including leverage, liquidity, credit rating, and a quadratic polynomial

18Using idiosyncratic shocks as “instruments” for estimating microeconomic or macroeconomic elastici-
ties is increasingly common in applied microeconomics and finance (see Leary and Roberts (2014), Amiti et
al. (2019), Gabaix and Koijen (2022a)).
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Figure 2: Distribution of Idiosyncratic Firm Shocks
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Notes: This graph plots the pooled distribution of idiosyncratic firm shocks estimated from equation (2).

in age.19 The term α j captures the firm fixed effect, while θg( j),t captures time varying
group level fixed effects, specified as the interaction of year × firm industry × firm county
fixed effect. Here, K and W are proxies for capital and labor inputs, while X are various
measures of firm riskiness. These factors should capture the banks’ information set well.20

The object of interest is the residual from this regression, ϵ j,t, which is the main right-
hand side variable for the rest of the paper. Essentially, what we are trying to capture
are unforeseen changes in firm performance that banks, despite observing multiple layers
of data, could not have anticipated. Examples of such events include a factory collapse,
fraud and mismanagement, operational and logistical accidents, human error, etc. In
Section C of the Online Appendix we provide a headline and narrative-based explanation
for some of the most negative shock realizations in our sample.

Figure 2 plots the distribution of our baseline shock measure ϵ j,t, pooled across all
firms and years. It is noticeably left-skewed, i.e. with a larger mass in the left tail.

Factor Analysis Despite controlling for a variety of firm characteristics and fixed effects,
there is still concern that our shocks ϵ j,t may pick up some latent common components. In
Section A.1 of the Online Appendix, we generalize the reduced-form specification in (2)

19Value added is measured as sales minus material, energy, and other costs.
20A potentially important factor that is missing from this specification is market prices. The share of

publicly traded firms in our data is, however, very small. Moreover, credit rating arguably captures the
same information that would be embedded in the stock price (albeit updated far less regularly).
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and formally extract parameteric and non-parameteric common factors from the residual
ϵ j,t. All our results and insights remain unchanged.

3.3 Loan Outcomes

We now identify the impact of idiosyncratic firms shocks on loan-level returns. Different
banks hold different portfolios of firms at different times, and are thus exposed to different
combinations of shocks. Therefore, we first define an object P(i, t) which signifies the set
of all firms that borrow from bank i in year t. The dependent variable is Ri, j,t which is the
realized return on a credit relationship (RoL) that bank i earns from firm j in year t. The
main independent variable is our measure ϵ j,t, which stands for shocks that originate at
firms j in year t. The granularity of our data allows us to control for time-varying bank
supply factors, such as risk aversion or monitoring skills, by including interacted bank ×
year fixed effects.21 In practice, we do even more and also account for firm industry and
county fixed effects. Our most restrictive specification implies that the impact of shocks
is identified by comparing loan-level returns across firms in the same county, industry,
year, and who are borrowing from the same bank. For some firm-bank relationships in our
dataset we also observe the fraction of total loan volume that comes from credit lines. This
allows us to also consider specifications which include a loan type fixed effect.22 Formally,
we we run the following panel specification for bank i and firm j relationships in year t,
i.e. for j ∈ P(i, t):

Ri, j,t = βϵ j,t + θg(i, j,t),i,t + α j + νi, j,t (3)

where αi refers to a firm fixed effect and θ(·) to the interaction of bank × year fixed effects
with group fixed effects defined at the level of the relationship. Specifically, in our most
conservative specification θ(·) includes the full interaction of bank × year × firm industry
× firm county × loan type fixed effects. Because the main RHS variable is estimated, our
standard errors are corrected for the additional uncertainty due to an estimated regressor
via bootstrapping.

21Coimbra and Rey (2023), among others, show that heterogeneity in risk appetite among financial
intermediaries is a determining factor for financial and business cycles. Our fixed effects specification takes
care of this important issue.

22A firm-bank relationship is classified as a credit line loan in year t if more than 50 percent of total credit
in the relationship comes from credit lines.
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3.4 Granular Credit Risk: Bank Outcomes

After investigating how idiosyncratic firm shocks affect loan returns, we then move up to
the level of a bank portfolio. First, we build our main regressor by aggregating the firm
shock measure in the following manner:

ϵ̄i,t =
∑

j∈P(i,t)

si, j,tϵ j,t (4)

where si, j,t is firm j’s loan share in the portfolio of bank i as of year t, normalized to follow∑
j∈P(i,t) si, j,t = 1. The main dependent variable is bank-level return on all corporate loans

(RoA) Rb
i,t, which is computed as the loan-share weighted average of loan-level returns.

We proceed by analyzing the following relationship:

Rb
i,t = αi + αt + βϵ̄i,t + ω

′

i,tγ + νi,t (5)

where ω is a vector of observable bank-level controls, αi and αt denote bank and time
fixed effects, and ν is the residual that is defined to be orthogonal to the control vector.

Identification Our loan-level analysis exploited within-bank-year variation to control
for confounding credit supply-side factors. This is no longer possible when we turn our
focus to outcomes at the bank level as the set of loans selected by each bank P(i, t) is likely
to depend on bank factors and the performance of these loans may be correlated with or
impacted by those bank factors. Consider the set of firms j borrowing from bank i in year
t. A problem occurs whenever the following holds:

ϵ j,t = η
′

i,tδi + ui, j,t , ∀ j ∈ P(i, t) (6)

where η′i,t is a vector of bank i characteristics and ui, j,t is the residual of firm j’s shock,
defined to be orthogonal to bank i characteristics η′i,t.

23 Whenever η and ν correlates we
have that Corr(ϵ̄i,t, νi,t) , 0. In words, firm shocks could be contaminated via a non-zero
loading δ on some vector of uncaptured time-varying bank characteristics η′. In order to
address this concern, we adopt a newly proposed “granular instrumental variable” (GIV)
(Gabaix and Koijen, 2022a,b) approach that constructs an instrument for the “endogenous”
covariate ϵ̄i,t by exploiting excess concentration of loan shares. Specifically, the granular
instrument ZGIV

i,t is built by subtracting the unweighted average of firms shocks from the

23Notice the firm shock can be expressed as ϵ j,t =
∑

k I
k
j,tη
′

k,tδk + e j,t, with Ikj,t a dummy variable equal to 1

if firm j borrows from bank k in year t. The residual in (6) is then given as ui, j,t =
∑

k,i I
k
j,tη
′

k,tδk + e j,t for firms
borrowing from bank i (Iij,t = 1)
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loan-share weighted average of firm shocks, all belonging to the corporate loan portfolio
of bank i in year t:

ZGIV
i,t =

∑
j∈P(i,t)

(
si, j,t −

1
Ni,t

)
ϵ j,t (7)

where Ni,t is the number of firm relationships in bank i’s portfolio in year t. It is useful to
re-write the instrument formula in the following manner

ZGIV
i,t =

∑
j∈P(i,t)

si, j,tϵ
∗

i, j,t (8)

with
ϵ∗i, j,t = ϵ j,t −

1
Ni,t

∑
j∈P(i,t)

ϵ j,t , ∀ j ∈ P(i, t) (9)

that is, ϵ∗i, j,t is the shock of firm j after the subtraction of the average firm shock in bank
i’s portfolio.24 Given the relation in (6), the GIV purges out the confounding supply side
factors and ϵ∗i, j,t = ui, j,t −

1
Ni,t

∑
j∈P(i,t) ui, j,t becomes an observable proxy for the unobserved

exogenous firm component u.
The exclusion restriction for our instrument can be stated precisely as:

E



∑

j∈P(i,t)

si, j,t︸︷︷︸
Weights

Firm Shocks︷︸︸︷
ϵ∗i, j,t

 νi,t

 = 0 (10)

Now, with our exclusion restriction in mind, identification is achieved if at least one of
the following two conditions is satisfied:

1. Firm shocks ϵ∗i, j,t are as-good-as randomly assigned.

2. Weights si, j,t are as-good-as randomly assigned.

Our main argument that the exclusion restriction is satisfied rests on the first condition.
We take countless precautions and conduct a number of robustness checks to argue
that firm shocks are as-good-as randomly assigned. First, we perform two robustness
checks addressing potential threats to the exclusion restriction. In Section A.2 of the
Online Appendix we relax the homogeneous loading assumption, implicit in (6) since
δ does not vary with j, and show robustness to allowing for bank factors to have firm

24Notice that in the case firm j borrows from more than one bank in year t, ϵ∗i, j,t will differ across banks
because they hold different firms in their portfolios.
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specific loadings. In Section A.3 we address the concern that unobserved bank factors
may correlate and break the exclusion restriction whenever firms have multiple bank
connections. Second, the firm shock extraction step in (2) includes firm fixed effects which
should absorb any persistent dependence on νi,t through time. In addition, the same
specification includes multiple time-varying firm balance sheet and income statement
controls that capture most measurable correlates of bank factors. Third, we run our bank-
level analysis by horizon and document the absence of any “pre-trends” in section 3.4.
Fourth, in Section C of the Online Appendix we provide narrative-based explanation for
some of the realizations of firm shocks and demonstrate that the underlying events are
not systematic, occur at the level of the firm, and are unforeseen and non-forecastable.
Fourth, in Section E of the Online Appendix we document that our shock measure is not
correlated in the cross section or across time. Overall, we provide a multi-dimensional
account in favor of as-good-as-exogeneity of our firm shock measure.

We now discuss the second potential identifying condition: random assignment of
weights. First, as was mentioned previously, as a proxy for contemporaneous loan shares
our loan share measure is computed using average debt between periods t and t-1. This
mitigates any contemporaneity concerns and makes it more likely that shares are “pre-
determined” with respect to shocks in time t. Second, loan shares and firm shocks are
reassuringly contemporaneously uncorrelated in our sample.25 But banks clearly allocate
funds across firms in a systematic fashion due to, for instance, specialization in an industry
or region, and although we observe that credit relationships are typically persistent across
time, credit shares are unlikely to be assigned randomly. However, even if the distribution
of weights is “endogenous”, i.e. the second exclusion condition is violated, we can still
achieve identification if the first condition holds. In fact, this very point is analysed in
detail also by Borusyak et al. (2022) in the context of Bartik instruments or shift-share
designs, which we discuss later in this section and in B.

Instrument Relevancy Now, while identification is achieved through the assumption
of as-good-as-random assignment of our firm shock measure, instrument relevance and
power arise from the excess concentration of loan shares.26 The overarching motivation
for instrument power stems from the granular hypothesis (Gabaix, 2011): independently
from whether shocks are truly idiosyncratic or not, the GIV is a relevant instrument for
the analysis of whether the impact of shocks vanishes out in the aggregate if weights are

25The raw correlation between loan shares and firm shocks in our sample is −0.02. The correlation is
computed for each bank, and we report the average across banks. We also compute and discuss absolute
average correlations in the Online Appendix.

26We thank an anonymous referee for this insight.
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concentrated. In other words, shocks that hit individual firms are more likely to affect
bank-level outcomes if the firm constitutes a large share in that bank’s portfolio.

The importance of excess concentration is evident from the theoretical, model-
independent correlation between the instrument and the endogenous covariate. In Section
B.2 of the Online Appendix we show that this correlation can be expressed as:27

Corr(ZGIV, ϵ̄) =

√√
eHHI

σ2
η

σ2
u
+HHI

(11)

where HHI refers to the loan share Herfindahl index and eHHI = HHI − 1/N to the excess
Herfindahl index. For the instrument to be relevant we thus need large idiosyncratic
shocks (high σ2

u) hitting large borrowers (high eHHI).
Several arguments support the relevancy of our instrument. First, our motivating

Figure 1 documents that credit shares in the Norwegian banking sector feature a fat tail,
i.e. are very concentrated. Second, the aggregate excess loan share Herfindahl for the whole
banking sector is persistently positive, never vanishes to zero, and varies mildly over time.
This can be seen from Panel (A) of Figure 8, which we discuss in more detail later in the
context of the external validity of our study. This observation is also captured by the eHHI
term in equation (11). In the language of Borusyak et al. (2022), the “weight concentration
index” requirement appears to be satisfied in our case, both in the cross section and in the
aggregate across time. Third, the Pearson correlation between the instrument ZGIV

i,t and
the endogenous covariate ϵ̄i,t is very high: 0.863, suggesting that most of the variation in
loan share-weighted firm shocks comes from shocks that hit granular borrowers. There is
therefore much evidence to suggest that the granular IV is a powerful instrument in our
context. Moreover, as Section 5.1 will emphasize, portfolio concentration appears to be
an ubiquitous observation and the GIV could be useful in many other settings.

Our main bank-level specification is then a simple two-stage least squares regression
with ZGIV

i,t as instrument for ϵ̄i,t.28

Relation to Shift-Share Instruments Our empirical approach and reliance on the granu-
lar IV is related to a complementary econometric framework - the Bartik (1991) instrument,
also known as shift-share designs. A rich literature has developed over the past few years
that studies this framework both theoretically and in applied settings (Adao et al., 2019;

27To arrive at the theoretical expression in (11) we consider a single bank and simplify the analysis by
assuming that loan shares si, j,t and the number of clients Ni,t are constant across time.

28We estimate the first and the second stages in one step by IV as encouraged by Angrist and Pischke
(2009).
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Goldsmith-Pinkham et al., 2020; Borusyak and Hull, 2021; Borusyak et al., 2022). In Ap-
pendix B.1 we discuss in more detail how our empirical setup would look like if we
instead adopted the shift-share approach. The main takeaway of that discussion is that
while shift-share instruments are more appropriate for many other settings, the GIV is
more suitable in our context.

Large Loan Dynamics There is a rich tradition in macroeconomics to approximate ag-
gregate economic dynamics with the granular residual, i.e. idiosyncratic disturbances
stemming from the largest agents alone (Gabaix, 2011). For example, in a Hopenhayn
(1992)-style model of business cycles with a finite number of heterogeneous firms, Car-
valho and Grassi (2019) show that dynamics of the single largest firm explains a non-trivial
fraction of aggregate fluctuations. As a supplement to our baseline granular instrument,
we entertain a similar idea in our context. In this alternative implementation we focus
exclusively on the transmission of idiosyncratic shocks hitting borrowers that are in the
top 1 % of loan shares in their respective banks’ portfolios while controlling for the average
firm shock to the bottom 99 %. In other words, we construct a granular credit residual29.
In Appendix F, we document that all main results in this paper remain unchanged using
this alternative approach.

3.5 Granular Credit Risk Spillovers: Loan and Firm Outcomes

In order to study the economic consequences of granular credit risk, we investigate the
relationship between bank-level aggregated firm shocks and credit market outcomes. We
follow a large literature in banking relying on the methodology in Khwaja and Mian
(2008). We focus on a sub-sample of firms that borrow from multiple banks and compare
- for the same firm - loan supply and interest flow outcomes from banks that experienced
good or bad granular credit shocks. In particular, we test whether banks pass on shocks
originating from their granular borrowers to the rest of their credit portfolio (non-granular
borrowers). We define non-granular borrowers as firms whose loan share is below a certain
threshold, defined as a certain percentile of the loan share distribution, e.g. the median.
We will be considering a discrete measure of non-granularity where we iteratively restrict
the estimation sample to firms with a loan share below the 20, 21, . . . , 99 percentiles.

The dependent variable in our loan-level analysis is ∆y j,i,t, which is the yearly change
in either loan supply or interest flow for firm j that borrows from bank i in year t. The
independent variable is ∆ûi,t, which is the fitted value from the regression of the change

29We thank an anonymous referee for this suggestion
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in the endogenous bank-level shock ∆ϵ̄i,t on the change in the granular instrument ∆ZGIV
i,t .

We run the following 2SLS specification:

∆y j,i,t = β∆ûi,t + αi + θg( j), j,t + ν j,i,t (12)

where θg( j), j,t is a time varying firm fixed effect interacted with group level fixed effects at
the firm industry × county level, and αi is a bank fixed effect.30

After investigating loan-level responses, we aggregate our data to the firm level and
test whether there are any spillover effects from granular credit shocks onto firm balance
sheet aggregates such as fixed capital spending. We also look at the impact of granular
credit risk on firm bankruptcies. We run the following firm-level regressions:

∆y j,t = β∆û j,t + α j + θg( j),t + ν j,t (13)

where θg( j),t are firm industry x county x year interacted fixed effects and y j,t are now firm-
level outcomes such as (yearly changes in) fixed capital spending and an indicator variable
which takes the value of unity if the firm is bankrupt and zero otherwise. In these spillover
regressions the series of shocks ∆û j,t is treated as a shock to the intermediaries’ balance
sheet, which is then passed on to the rest of the economy as a bank-side disturbance.
The difference between our paper and the rest of the literature is that the origin of this
bank-side risk is (uninsured) idiosyncratic risk from large, granular borrowers.31

4 Main Empirical Results

We investigate how firm value-added shocks affect loan returns in section 4.1. In section
4.2, we aggregate firm shocks to the bank level and see whether the effect is still significant
despite portfolio-level risk pooling. In section 4.3 we ask whether granular credit risk goes
unhedged at the bank level. In section 4.4, we test whether there are spillovers from gran-
ular credit risk onto other firms and trace out their real economic consequences. Finally in
section 4.5 we assess the contribution of granular credit risk for overall bank credit supply
variation and explore the benefits of limiting portfolio concentration, keeping everything
else constant.
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Table 2: Loan Outcomes

(1) (2) (3) (4)

Depend. Variable: Return on Loan (RoL)

Firm Shock (std.) 0.334 0.335 0.361 0.336
(0.015) (0.017) (0.019) (0.017)

Bank x Industry x Year FE - ✓ - -
Bank x Industry x Year x Loan-type x County FE - - ✓ ✓
Firm FE - - - ✓
Observations 333289 317186 292825 282002
R2 0.001 0.114 0.167 0.528
E(RoL) 9.012% 9.029% 9.098% 9.076%
SD(RoL) 8.921% 8.928% 8.923% 8.687%

Notes: This table reports results from the regression of loan-level returns on idiosyncratic firm shocks. The exact specification is
described by equation (3). Firm shocks are normalized by their standard deviation. Loan types include regular and credit-line loans.
Counties are 19 administrative areas (fylke) in Norway. Industries are 99 2-digit sectors. Standard errors (in parentheses) are double
clustered at the firm and year levels and corrected for the estimated regressor bias with bootstrapping. The last two rows report the
unconditional sample mean and standard deviation of the dependent variable.

4.1 Loan Outcomes

Table 2 presents the impact of firm shocks on loan returns, obtained by estimating equation
(3). Overall, firm shocks have a large and significant (at the 1% level) effect on loan-level
returns. Our preferred specification is column (4) which features the most restrictive
constellation of fixed effects. The result is the following: a 1-standard-deviation increase
in the firm shock measure affects loan returns by 33.6 basis points, which quantitatively
amounts to about 4% of the dependent variable’s standard deviation. In words, when
comparing a bank’s loan return across firms within the same year, industry, county, and
through the same loan facility, a 1 std. unexpected reduction in firm performance reduces
loan returns by roughly a third of a percentage point.32

4.2 Granular Credit Risk: Bank Outcomes

The finding that firm-level idiosyncratic shocks impact loan returns merely reflects the fact
that individual loans are inherently risky investments. There is little margin of adjustment
for the bank to insure against realized bad loan-level outcomes. The natural next question
is whether these idiosyncratic shocks average out at the level of bank portfolios. In other

30Just as before, we run both stages of the 2SLS regression in a single step.
31We test and discuss the insurability of granular credit risk in Section 4.3.
32Note that the coefficient stays virtually unchanged from moving from a specification with no controls

(column 1) to the specification with a full set of controls (column 4), while the R2 increases substantially,
providing further support to the exogeneity of our firm shock measure Altonji et al. (2005) and Oster (2019).
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Table 3: Bank Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

Weighted Firm Shock (std.) 0.129 0.136 0.116 0.016 0.194 0.117 0.056 0.176
(0.029) (0.027) (0.031) (0.094) (0.074) (0.030) (0.087) (0.072)

First stage F-stat 1429.683 138.772 396.907 1137.722 150.136 263.982

Bank FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bank Controls - ✓ - - - ✓ ✓ ✓
Observations 1211 1211 1211 508 694 1211 508 694
R2 0.752 0.770 0.599 0.646 0.569 0.627 0.683 0.592
E(RoA) 6.350% 6.350% 6.350% 6.460% 6.289% 6.350% 6.460% 6.289%
SD(RoA) 1.354 1.354 1.354 1.403 1.295 1.354 1.403 1.295

Notes: This table reports results from regressing bank-level return on loans on aggregated firm shocks ϵ̄i,t. Columns (1)-(2) show OLS
results for specification (5), while columns (3)-(8) instrument the independent variable with the granular IV. Positive (negative) shock
specifications include only observations in which the shock measure ϵ̄i,t is above (below) zero. Bank controls include lagged total
assets, leverage, liquidity, number of loans, deposit to assets ratio and financial assets to assets ratio. The last two rows report the
unconditional sample mean and standard deviation of the dependent variable. The F-stat is the Kleibergen-Paap rk Wald F statistic
for the test of weak identification. Standard errors (in parentheses) are clustered at the bank level and corrected for the estimated
regressor bias with bootstrapping.

words, can/do banks take advantage of risk pooling and diversify idiosyncratic firm risk
away? To answer this question we proceed with our bank-level analysis. Results are
reported in Table 3, where we have normalized the bank shock by its standard deviation.

We report two sets of specifications: with and without the granular instrumental vari-
able (GIV). In the first two columns (OLS estimates) we find that even at the level of banks’
portfolios, idiosyncratic credit risk is associated with large and significant effects on bank
returns. To address potential endogeneity concerns, columns (3)-(8) report results from
the 2SLS regression.33 Our results show that a one standard deviation GIV-instrumented
firm shock, on average, affects bank loan portfolio returns by 11-12bps, which amounts
to roughly 8% of the dependent variable’s standard deviation.34 We have specifications

33In Figure D3 of the Online Appendix we plot the relationship between the GIV and the raw endogenous
covariate ϵ̄i,t. There is a strong, positive relationship between the two variables with a Pearson correlation of
0.863. Formal statistical diagnostic tests also show validity of the GIV as a good instrument. The first-stage
F-statistic in Table 3. is above the Stock and Yogo (2005) criterion for 5% maximal relative bias.

34In our sample, the average bank’s RoA is 6.350% and the average annual interest flow (return) is
NOK41.2 million. Thus, a one-std. negative Granular Credit shock lowers RoA to 6.174% and interest
collected to NOK40.05 million - a reduction of NOK1.15 million per bank per year. The number of unique
banks in the estimation sample is 111. Thus, total realized loss that could be attributed to Granualr Credit
Risk equals NOK127.65 million (or 12.97$ million) per year, on average. For reference, this accounts for
11.5% of the standard deviation in the aggregate variation of total sector-wide bank returns from corporate
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with and without additional bank controls which include lagged values of book leverage,
liquidity, total assets, number of loans, deposit-to-asset ratio, and financial assets to total
asset ratio.35 Results are qualitatively and quantitatively robust to the exclusion of these
controls.36

A second key set of results is related to the asymmetric effects of granular firm risk. In
columns (4)-(5) and (7)-(8) of Table 3 we explore positive- and negative-only firm shocks,
with and without bank controls. Specifically, we condition on the treatment, i.e. the
loan share-weighted firm shock ϵ̄i,t being positive or negative only, and instrument it by
the GIV. Only negative shocks have a significant impact on bank returns. The impact
of positive shocks is not statistically significantly different from zero. A one standard
deviation negative granular firm shock lowers bank returns by up to 19.4bps, which is
much larger than the average effect and amounts to roughly 15% percent of the standard
deviation of banks’ portfolio returns - almost double the magnitude of the pooled case.
Due to the payoff structure of the debt contract, this very concave relationship is not
surprising. Because of debt contracts, banks find it difficult to extract higher dividends
from firms that are performing well, while at the same time remaining exposed to potential
downside risk from firms that perform poorly. In case of a negative shock, the firm’s loan
may become nonperforming, the firm may default on the obligation, or exit the industry
altogether.37

Figure 3 provides a visual representation of this concave relationship. The figure
depicts the (binned) scatter plot of the impact of GIV-instrumented firm shocks on banks’
returns on loans (RoA). Blue circles (red squares) represent positive and negative shocks,
respectively. We construct the binned scatter plots by first regressing both bank RoA and
the GIV-instrumented firm shocks on bank and time fixed effects, then computing the
residuals, and adding back the mean of each variable. We then construct 50 equally-sized
bins of the residual shock variable. Figure 3 plots the mean residual bank RoA within
each bin versus the bin’s mean residual shock. Finally, we overlay the linear fits for the
respective specifications. The asymmetry of the result is rather striking: the line of best fit

loans across time. By all accounts, this is an economically significant fraction of the aggregate fluctuation
in bank profitability.

35Theoretically, if the exclusion restriction holds, the GIV approach would not require any further bank-
time controls. The reason is that GIV, by construction, would be purged from any bank-time factors. For
robustness, we still include observable bank controls. Results do not change in any substantial matter,
which adds validity to the method. In addition, in Section A.2 we also control for latent bank-time factors,
extracted using PCA. Results do not change either.

36Bank-level return on corporate loans (RoA) is the main dependent variable in this section. We have also
experimented with loan writedowns and portfolio-level Sharpe ratios. Table D7 of the Online Appendix
reports the results. We find some evidence that granular credit risk, when instrumented by the GIV, is
weakly positively (negatively) associated with the Sharpe Ratio (writedowns).

37We explore the extensive margin in detail in Section D.1 of the Appendix.
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Figure 3: Granular Credit Risk and Bank Outcomes
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Notes: This figure visualises the relationship between residualized bank-level return on loans and residualized instrumented bank-level
aggregated firm shocks. The red squares (blue circles) are binned scatterplots conditional on negative (positive) values of the weighted
firm shock ϵ̄i,t. The shock variable is normalized by its standard deviation. We construct the conditional binned scatterplot in three
steps, and each step is performed separately on positive and negative values of ϵ̄i,t. First, we residualize bank-level returns on loans
and instrumented firm shocks. Instrumented shocks represent fitted values from regressing ϵ̄i,t on the GIV. The residualized return
and shock values are obtained from regressing each variable on bank and time fixed effects, computing the residual, and adding back
the mean of each variable. Second, we construct 50 equally-sized bins based on the residualized shock. Third, we plot the mean
residual bank return within each bin versus the bin’s mean residual shock. The red (blue) line represents the linear fit from regressing
bank-level loan return on instrumented shocks, conditional on ϵ̄i,t < 0(> 0).

for positive shocks is flat, while the slope for negative shocks is downward-sloping and
highly significant. The bins are all equally-sized, so each dot represents 10+ underlying
bank × time observations. Our results are thus not driven by any individual outliers. We
interpret the concave relationship as further validation that our measure of firm shocks is
indeed economically informative.

In Figure 4 we report bank outcomes by horizon. We find that the impact of GIV-
instrumented firm shocks on bank RoA lasts for up to 1 year, i.e. a shock at t has a
significant effect on returns even at t+1. In addition, the effects of lags are not statistically
significant implying the absence of any pre-trends, especially for the case of all shocks in
Panel (a). This is important for the validation of the exclusion restriction, as previously
mentioned in Section 3.4.

4.3 Hedging

We have so far established that idiosyncratic shocks to individual corporate clients affect
bank portfolio returns. However, it is possible that financial intermediaries hedge granular
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Figure 4: Bank Outcomes by Horizon
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Notes: This figure plots the results from regressing leads and lags of bank-level returns on the bank-level aggregated firm shock
measure ϵ̄i,t that is instrumented by the granular IV. The left panel includes all shocks, and the right panel includes negative shocks
only (ϵ̄i,t < 0). Coefficients are plotted by horizon (in years) of the dependent variable. Dashed lines are 95% confidence bands.

credit risk with derivatives and other instruments. To attempt answering this question,
we collect bank-level data on income from fees, derivatives, equity and bond holdings,
and dividends. All of these variables have been scaled by total corporate loans. We
then correlate changes in returns from these sources with our GIV-instrumented shocks.
The conjecture is that in the same state of the world in which banks are hit with bad
idiosyncratic shocks to their loan books, returns are compensated through alternative
departments within the same bank. For example, banks could command higher fees for
late interest payments, hedge negative states with credit derivatives, short stocks of firms
they are also lending to, etc.

Table 4 reports the results. As can be seen from the table, the data cannot consistently
reject the null hypothesis of little to no insurance against granular credit risk. Few of the
measures of non-interest income are significantly associated with our shock measure, and
the magnitudes are quantitatively very small. A one standard deviation change in the
granular shock results in these income measures moving less than 1 percent relative to
total firm loans. Importantly, most forms of income are if anything very weakly positively
correlated with idiosyncratic credit shocks, which questions their usefulness as a hedging
instrument.

A drawback of this analysis is that the various hedging instruments analyzed in Table
4 are only observable at the bank level. A more detailed analysis would construct matched
derivatives holdings at the level of individual credit relationships. This would increase
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Table 4: Hedging Granular Credit Risk

(1) (2) (3) (4) (5)

Dependent Variable: Income from Fees Derivatives Equity Bonds Dividends

Pooled

GIV-Instrumented Firm Shock (std.) -0.000 0.001 0.016 0.003 0.002
(0.002) (0.001) (0.016) (0.002) (0.002)

Bank FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Observations 1211 1210 1103 1198 1181
R2 0.025 0.012 0.011 0.008 0.017

Negative Shocks Only

GIV-Instrumented Firm Shock (std.) 0.003 0.004 -0.000 0.006 0.003
(0.003) (0.002) (0.000) (0.004) (0.003)

Bank FE ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓
Observations 697 679 632 692 684
R2 0.049 0.043 0.273 0.044 0.032

Notes: This table reports results from regressing bank-level non-interest income components, in percent of total firm loans, on bank-
level aggregated firm shocks, instrumented by the granular IV. The top panel presents results for all shocks, positive or negative. The
bottom panel presents results for negative shocks only (ϵ̄i,t < 0). The granular IV is constructed based on equation ((7)). Standard
errors (in parentheses) are clustered at the bank level. Data on all bank non-interest income is from the financial supervisory database
ORBOF.

the odds for banks to hedge firm-specific risk, something that we can not fully analyse by
looking at portfolio-level data. This would be possible only for a very small subset of
large firms that are (a) listed and (b) have a liquid market for credit derivatives such as
credit default swaps (CDS). The mass of such firms is small and the CDS market is not
very liquid in Norway. Regardless, insurability of granular credit risk is an important
question, to which we can give only a partial answer given the data constraints.38

4.4 Granular Credit Risk Spillovers: Loan and Firm Outcomes

Loan Outcomes Previous sections have documented that granular credit risk has quan-
titatively important effects on bank portfolio outcomes, and that this risk is unhedged. In
this section, we ask whether banks hedge these shocks “ex-post”, i.e. by passing it on to
the rest of their corporate portfolio. We are interested in seeing whether banks react by
reducing loan supply or raising interest flow, in particular on non-granular firms. The
specification behind the results below is equation (12).

38Banks could also dilute single-name concentration risk by engaging in syndicated lending. In the case
of Norway, however, syndicated loans constitute a very small fraction of external financing for firms.
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Table 5: Spillovers from Granular Credit Shocks: Loan-Level Supply

(1) (2) (3) (4) (5)

Dependent Variable: ∆ Loans (std.)

∆ Bank Shock (std.) 0.007 0.056 0.051 0.246 0.231
(0.013) (0.037) (0.038) (0.115) (0.112)

Non-Granular Firms (50%) - ✓ ✓ - -
Non-Granular Firms (20%) - - - ✓ ✓
Year x Industry x County x Firm FE ✓ ✓ ✓ ✓ ✓
Bank FE - - ✓ - ✓
Instrumented by GIV ✓ ✓ ✓ ✓ ✓
Observations 15279 3479 3443 232 212

Notes: This table reports results from regressing year-on-year changes in (log) bank debt on the year-on-year change in bank-level
aggregated firm shocks which are instrumented by the granular IV. Specifications are based on equation ((12)). Both dependent and
independent variables have been standardized. Column (1) includes all firms. Columns (2)-(5) include only non-granular firms.
Non-granular firms are defined as firms whose bank loan shares are less than the 50th (columns (2)-(3)) or the 20th (columns (4)-(5))
percentiles of the loan share distribution, which is pooled over all banks and years. The full distribution of loan shares was plotted on
Figure 1. Standard errors (in parentheses) are double clustered at the bank and firm level.

Table 5 reports our results on the supply of credit. In all specifications we impose a
stringent configuration of interacted firm × year × industry × county fixed effects. Our
specifications regress year-on-year changes in the granular credit shock on year-on-year
changes in loan-level credit supply. Both dependent and independent variables have been
standardized. In column (1), we start with the sample of all firms and find no significant
relationship. In columns (2)-(5) we restrict the sample to non-granular firms only. Non-
granular firms are defined as those whose bank loan shares are below the 50th (columns
(2)-(3)) or 20th (columns (4)-(5)) percentiles of the loan share distribution. We do find a
statistically significant relationship in this case, particularly when the threshold is the 20th
percentile. In columns (3) and (5) we add a bank fixed effect to the baseline configuration
of fixed effects and results do not change substantially. Overall, a one-standard deviation
negative granular credit shock reduces loan supply growth to non-granular borrowers
by up to 5% (24%) of the dependent variable’s standard deviation in the case of 50th
(20th) percentile thresholds. These magnitudes are comparable to for instance the effects
of bank-level liquidity shocks on loan growth as in Khwaja and Mian (2008). Specifically,
their estimates (Table 3 - column 1) imply that a 1 s.d liquidity shock at the bank-level
leads to a 15 % decline in the growth of loan volumes. Finally, later in this subsection we
consider other thresholds for the non-granular firm definition.

In Table 6 we repeat the same exercise but with interest flow as the left-hand-side
variable. We find a strong negative relationship between year-on-year changes in granular
credit risk and yearly growth in loan-level interest flows. We interpret these changes in
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Table 6: Spillovers from Granular Credit Shocks: Loan-Level Interest Flow

(1) (2) (3) (4) (5)

Dependent Variable: ∆ Interest Flow (std.)

∆ Bank Shock (std.) -0.004 -0.087 -0.101 -0.079 -0.166
(0.014) (0.043) (0.042) (0.113) (0.116)

Non-Granular Firms (50%) - ✓ ✓ - -
Non-Granular Firms (20%) - - - ✓ ✓
Year x Industry x County x Firm FE ✓ ✓ ✓ ✓ ✓
Bank FE - - ✓ - ✓
Instrumented by GIV ✓ ✓ ✓ ✓ ✓
Observations 15279 3479 3443 232 212

Notes: This table reports results from regressing year-on-year changes in (log) interest flows on the year-on-year change in bank-level
aggregated firm shocks which are instrumented by the granular IV. Specifications are based on equation ((12)). Both dependent and
independent variables have been standardized. Column (1) includes all firms. Columns (2)-(5) include only non-granular firms.
Non-granular firms are defined as firms whose bank loan shares are less than the 50th (columns (2)-(3)) or the 20th (columns (4)-(5))
percentiles of the loan share distribution, which is pooled over all banks and years. The full distribution of loan shares was plotted on
Figure 1. Standard errors (in parentheses) are double clustered at the bank and firm level.

flows as an effect on loan pricing. A one-standard deviation decline in the granular credit
shock increases interest flow growth on loans to non-granular clients by up to 10.1%
(16.6%) of the dependent variable’s standard deviation in the case of 50th (20th) percentile
thresholds. Taken together with the positive association with credit quantities, we have
identified granular credit risk as a textbook supply-side disturbance: a negative granular
credit shock induces a leftward shift in the supply schedule, leading to a reduction in
quantities and an elevation in prices. In addition, the pass-through mechanism can also
be interpreted as operating through a kind of bank credit supply network: two firms
that may otherwise not be connected can impact each other’s performance through their
association with a common lender. We return to the issue of network effects more formally
in Section 5.2.

Firm Capital Expenditure Next, we ask whether spillovers on non-granular firms ul-
timately lead to significant economic consequences. We aggregate our data to the firm
level and consider fixed capital stock growth as the dependent variable. The empirical
specification of interest is now equation (13). We allow for the interacted year × indus-
try × county fixed effects as well as the firm fixed effect. In addition, we focus on the
same samples of non-granular firms where non-granularity is defined based on bank loan
shares being below the 50th or 20th percentile of the global distribution of loan shares. In
other words, we trace out the economic consequences of a credit supply shock on the
same non-granular firms that we show were impacted in Tables 5 and 6.
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Table 7: Firm Outcomes from Granular Credit Shocks

(1) (2) (3) (4) (5)

Dependent Variable: ∆ Capital (std.)

∆ Bank Shock (std.) 0.005 0.025 0.037 0.044 0.025
(0.003) (0.009) (0.011) (0.025) (0.059)

Non-Granular Firms (50%) - ✓ ✓ - -
Non-Granular Firms (20%) - - - ✓ ✓
Industry x County x Year FE ✓ ✓ ✓ ✓ ✓
Firm FE - - ✓ - ✓
Instrumented by GIV ✓ ✓ ✓ ✓ ✓
Observations 157642 66648 55770 19608 13719

Notes: This table reports results from firm-level regressions where the outcome variable is year-on-year change in the (log) fixed capital
stock. The key independent variable is the year-on-year change in bank-level aggregated firm shocks which are instrumented by the
granular IV. Specifications are based on equation ((13)). Non-granular firms are defined as firms whose bank loan shares are less
than the 50th or 20th percentile of the loan share distribution. For firms with multiple banking relationships, we define a firm as
non-granular if the mode credit relationship is non-granular. Standard errors (in parentheses) are clustered at the firm level.

Results are reported in Table 7. We find that granular credit risk is positively associated
with fixed capital growth, particularly in the sample of non-granular borrowers. A one-
standard deviation negative shock causes a decline in firms’ fixed capital investment
growth by roughly 2.5%-4.4% of the dependent variable’s standard deviation. These
numbers are comparable, but somewhat smaller than the effects of a more general bank
shock on capital investment as in Amiti and Weinstein (2018). The impact on non-granular
firms defined by the median loan share cut-off, in particular, is strongly statistically
significant (columns (2)-(3)). This finding shows that frictions in financial intermediation
- specifically credit concentration risk - can affect the real, physical side of the economy.

Firm Bankruptcy Finally, we investigate whether granular credit risk not only affects
firm balance sheet variables but also triggers a higher frequency of corporate bankruptcies.
The dependent variable is now an indicator variable which takes the value of unity if a
firm is bankrupt and zero otherwise. The independent variable is the lagged ∆û j,t. Our
specifications include year, industry, and county fixed effects which collectively account
for various aggregate or correlated shocks that could confound our main channel. We
also include additional firm controls: lagged total assets, wage bill, leverage, liquidity,
and credit rating.

Table 8 reports the results from probit regressions. Across all specifications, neg-
ative granular credit shocks are positively associated with the likelihood of corporate
bankruptcy. In the case of non-granular firms, defined by the usual 50% or 20% loan share
thresholds, the relationships are also statistically significant (columns (3)-(6)). A one
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Table 8: Firm Bankruptcy from Granular Credit Shocks

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Prob. of Bankruptcyt Pr.(Ever Bankrupt)
∆ BankShockt−1 -0.010 -0.010 -0.032 -0.033 -0.076 -0.090 -0.050 -0.095

(0.010) (0.009) (0.010) (0.008) (0.046) (0.049) (0.009) (0.017)
Non-Granular Firms (50%) - - ✓ ✓ - - ✓ -
Non-Granular Firms (20%) - - - - ✓ ✓ - ✓
Firm Controls - ✓ - ✓ - ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pseudo R2 0.039 0.096 0.039 0.100 0.037 0.089 0.039 0.034
Observations 165000 165000 78511 78511 27828 27828 79965 28754

Notes: This table reports results from firm probit regressions of an indicator variable for firm bankruptcy on the bank-level granular
credit shock. In columns (1)-(6), the outcome variable is probability of contemporaneous firm bankruptcy. In columns (7)-(8), the
outcome variable is the probability that a firm ever goes bankrupt. Firm controls include lagged total assets, wage bill, leverage,
liquidity, and credit rating. Non-granular firms are defined as firms whose bank loan shares are less than the 50th or the 25th
percentiles of the loan share distribution, which is pooled over all banks and years. For firms with multiple banking relationships, we
define a firm as non-granular if the mode credit relationship is non-granular. Standard errors (in parentheses) are clustered at the year
level. Firm bankruptcy information is from the credit rating agency Bisnode.

standard-deviation negative granular credit shock raises the probability of bankruptcy
for non-granular firms by around 3%-9%. Note that the unconditional probability for the
same sub-sample of firms is 1.10% per annum. Therefore, the impact is around 3-10 basis
points p.a. In columns (7)-(8) we regress the probability of a firm filing for bankruptcy at
any point over its existence in our dataset on the lagged granular credit shock and find
quantitatively similar results.

Discrete Measure of Non-Granularity In our analysis of spillover effects we have so far
been focusing only on two non-granularity cut-offs: 50th and 20th percentiles of the loan
share distribution. It is possible that our results are accidentally driven by the peculiar
choice of these cut-offs. In an important test of robustness and generality of our spillover
results, we now regard non-granular firms as those with bank loan shares less than the Pth
percentile of the pooled credit share distribution. Unlike previously, we now re-estimate
our four spillover exercises for every P in the discrete interval [20, 99]. All specifications,
including the presence of fixed effects or controls, are otherwise the same as before.

Figure 5 reports the results. Panels (a) and (b) report loan-level spillover results for
loan supply and interest flow (both in yearly changes) as dependent variables. Panels (c)
and (d) portray firm-level spillover results for fixed capital (in yearly changes) and the
firm bankruptcy indicator as dependent variables. In all four panels, the x-axis shows
the discrete non-granularity interval [20, 99]. The y-axis shows point estimates and 90%
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confidence bands for each corresponding case. The overarching conclusion is that our
spillover results are not driven by a particular choice of the non-granularity cut-off but
are instead fairly universal.

Two general observations are noteworthy. First, the impact of granular credit risk is
inversely related to the non-granularity of affected firms. This can be vividly seen in
panels (a), (b), and (d): spillover estimates on loan supply and interest flow as well as
bankruptcy probability tend to become economically greater the more non-granular firms
are. Second, for very low values of P we often obtain noisy estimates. This occurs because
the sample sizes shrink; qualitatively, however, point estimates generally remain in the
same ballpark. Overall, all of the above is highly indicative of a “pecking order” of credit
relationships: banks adjust lending conditions with their non-granular borrowers in order
to compensate for portfolio losses stemming from their granular corporate clients.
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Figure 5: Spillovers from Granular Credit Shocks: Discrete Measure of Non-Granularity
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Notes: This figure reports results from the four baseline spillover exercises but for varying non-granularity cut-offs. Panels (a) and
(b) show loan-level spillover results for loan supply and interest flow as dependent variables, respectively. Panels (c) and (d) show
firm-level spillover results for fixed capital and bankruptcy indicator as dependent variables, respectively. In each panel, non-granular
firms are defined as firms whose bank loan shares are less than the Pth percentile of the loan share distribution, which is pooled over
all banks and years. Percentiles P = 20, 21, . . . , 99 are shown on the x-axes and the y-axes show point estimates and 90% confidence
bands for each respective case.

4.5 Quantification and Counterfactuals

In this section we provide back-of-the-envelope quantitative calculations of further im-
plications of granular credit risk.

Contribution to bank loan supply In Section 4.4 we saw that granular credit risk propa-
gates to bank credit supply and leads to a significant contraction of credit to smaller firms,
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explaining up to one-quarter of a standard deviation in firm level credit growth. We now
assess the contribution of granular credit shock for overall bank credit supply variation,
by comparing the R2 contribution of generic bank-time factors to the contribution of our
granular shock in the estimation of equation (13). The R2 contribution is measured by
how much R2 increases when controlling for either the granular credit shock or bank-time
fixed effects, relative to a baseline estimation of (13) with neither of these controls. We
perform this exercises for various non-granular firms’ cut-offs.

The results are displayed in Figure 6, where we plot the relative R2 contribution.
In panel (a) we first estimate the bank supply factors on the entire firm sample and
subsequently use those fixed effects as bank supply controls in the sub-sample regressions.
In panel (b) we re-estimate the bank-time fixed effect for each sample cut-off. In both cases
we see that granular credit shocks account for 8% to 20% of the total variation in credit
growth to smaller firms that is attributed to generic bank supply factors. We interpret
this as granular credit shocks representing a non-trivial part of time-varying bank credit
supply to smaller firms. Not surprisingly, as the non-granularity threshold is increased
and the credit growth impact of granular shocks diminishes (panel (a), Figure 5), these
shocks begin to gradually represent a smaller part of bank supply variation for that
particular non-granularity cut-off.

Counterfactuals Our flexible empirical setup allows for a variety of counterfactual tests.
In particular, we can feed alternative distributions of either weights or shocks into our
main granular credit risk measure and re-evaluate pass-through estimates. First, we are
interested in the extent to which our results are driven by excess credit risk concentration
which is not simply caused by a fat-tailed firm size distribution. To this end, we construct
bank-time shock measures ϵ̄i,t by using either actual loan shares or firm sales as weights.
In both cases, weights are normalized to sum to unity in each bank-time portfolio. We
use firm sales as a usual proxy for size following Gabaix (2011). Results are shown via
histograms in Panel (a) of Figure 7. The density of shocks that are weighted with loan
shares is more dispersed (standard deviation of 0.11 relative to 0.08) and more left-skewed,
reflecting the shape of the underlying distribution of firm shocks, while the firm sales-
weighted distribution is less dispersed and almost symmetrical around 0. This points
to the existence and importance of bank loan portfolio concentration over and above the
firm size distribution.

Our second counterfactual entertains a different aggregation scheme and answers the
following question: could the impact of granular credit risk be reduced if that risk was
distributed across portfolios of financial intermediaries differently? Suppose that the
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Figure 6: Granular Credit Risk and Bank Supply Factors
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Notes: This Figure plots the marginal R2 of granular credit shocks relative to the marginal R2 of bank-time fixed effects on the y-axes.
The marginal R2 is measured as the increase in R2 when controlling for either the granular credit shock or bank-time FE, relative to
a baseline estimation of equation (13) with neither of these controls. The x-axes represents different sub-sample regressions, where
the estimation of equation (13) is restricted to firms below a non-granularity percentile threshold p20,...p99. Non-granular firms are
defined as firms whose bank loans shares are less than the pth percentile of the loans share distribution pooled over all banks and
years. In panel (a) the bank-supply factor is first extracted as bank-time FE from estimating equation (13) on the full firm sample (p100
threshold). These supply factors is subsequently used as control variables in the different sub-sample regressions. In panel (b) the
bank-supply factor is re-estimated as bank-time FE on each sub-sample regression.

empirically observed distribution of weights si, j,t is sub-optimal and could be improved
upon. We can perform a simple but nevertheless informative exercise. Specifically, in each
year banks are exposed to the same distribution of firm shocks as before but the weights
are now those of a hypothetical universal banker lending to all firms in the sample:
ϵ̄i,t =

∑
j∈P(t) s j,tϵ j,t. One could think of this experiment as the reallocation of existing firm

credit across banks that would occur if all banks had ownership shares in the universal
bank, with shares reflecting the banks’ relative size as measured by total credit volume.
Figure 7, Panel (b), plots the resulting density of this counterfactual credit shock together
with the baseline. The standard deviation of the distribution of granular credit shocks
under this extreme reallocation is 0.04, i.e. it falls roughly by a factor of three. Thus,
there could be significant gains from macroeconomic stabilization of granular credit risk
just from a more efficient redistribution of credit shares and thus risk exposures (keeping
everything else constant, which may be a highly unrealistic assumption in this context).

The two counterfactual exercises grant us new values for the standard deviations of the
bank-time distributions of firm shock measures. Equipped with those, we now compute
counterfactual elasticities under scenarios where firm shocks are aggregated differently.
Importantly, we do not re-estimate our regressions. We use the same estimated coefficients
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Figure 7: Counterfactual Scenarios
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Notes: This Figure plots pulled densities of ϵ̄i,t under alternative aggregation scenarios. Panel (a) plots shocks that are aggregated to
the bank-year level either with loan shares or firm sales as weights; in each case, shares sum up to unity in each bank-year observation.
Panel (b) plots the distribution of shocks that are aggregated with weights that equal loan shares of firms in the whole economy. The
histogram is over-layed on the histogram of baseline shocks that are aggregated with the usual loan shares.

as before, compare standard deviations of our main regressor across the baseline and two
counterfactual scenarios and re-evaluate the pass-through estimate. Table 9 reports the
results for our five major empirical tests: the impact of granular credit risk on bank returns
and the four forms of spillover effects. First, elimination of credit concentration that is in
excess of firm size concentration could reduce the pass-through of granular credit shocks
on the macroeconomy by roughly 40%. Second, reallocating credit into a portfolio of a
universal bank further reduces pass-through by an additional half.

An important limitation of the above exercises is their partial equilibrium nature. Costs
of transition to new steady-state equilibria could be equally substantial. The trade-offs
between portfolio concentration risk, effiency, stability, and mis-allocation could therefore
only be studied in a more structural framework.

Taking Stock We conclude this section by reiterating our main findings. First, idiosyn-
cratic firm shocks have large and significant effects on loan-level returns. Second, these
shocks survive portfolio aggregation and impact bank-level outcomes. Importantly, these
shocks originate from granular, i.e. large, borrowers which is precisely the reason why
they do not wash out. Third, banks do not hedge granular credit risk with income from
non-loan businesses such as derivatives or equity investments. Fourth, there are consid-
erable loan-level spillovers of granular credit shocks on non-granular borrowers: affected
banks reduce loan supply and increase interest rates on their less important, non-granular
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Table 9: Main Results under Counterfactual Scenarios

(1) (2) (3)

Scenario

Point Estimate Baseline Alternative Aggregation Credit Reallocation

Bank Returns 0.129 0.086 0.043
Spillovers - Loan Supply 0.051 0.034 0.017
Spillovers - Interest Flow -0.101 -0.067 -0.034
Spillovers - Firm ∆ Capital 0.037 0.025 0.012
Spillovers - Firm Bankruptcy -0.033 -0.022 -0.011

Notes: This Table reports point estimates of the main empirical tests under alternative dispersions of the key regressor. Column
(1) reports baseline results: impact of a one-standard-deviation increase in the regressor on the corresponding dependent variable.
Columns (2)-(3) scale the point estimates by the standard deviations that are computed under counterfactual scenarios while not
re-estimating the specifications.

clients. Fifth, those affected clients in turn reduce their investment in physical capital and
are much more likely to file for bankruptcy. Overall, our results show that idiosyncratic
shocks to granular borrowers have important implications for the broader financial and
real economy. In the language of financial regulators, single-name credit concentration
risk is quantitatively important.

5 Discussion and Supplementary Results

In this section, we expand on several issues that are relevant for our analysis. First,
we argue for the external validity of our empirical approach and findings. Second, we
discuss the production networks literature and show that our spillover results are not
driven by firm-side inter-connectedness. Third, we explore heterogeneous effects in our
bank-level analysis. Fourth, we discuss the potential origins of credit concentration and
large loan exposure. Finally, we list further additional results and robustness checks that
are delegated to the Online Appendix.

5.1 External Validity

A relevant question to consider is how concentration of Norwegian banks’ loan portfolios
compares to other countries. Our empirical analysis has underlined that granularity in the
distribution of exposure shares is important for the transmission of idiosyncratic shocks
to granular exposures to portfolio-level outcomes of the lender. But is this setup unique to
the banking sector in Norway? The Norwegian economy is admittedly bank-dependent
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when it comes to sources of external financing. Thus, our approach could potentially not
be applicable to other countries.

A recent paper by Baena et al. (2022) applies our methodology to the European credit
register Anacredit and finds results that are consistent and in line with ours. First, they
document a substantial degree of concentration and right-skewness of the loan share
distribution in the context of bank credit in France. Second, Baena et al. (2022) also quantify
the pass-through of estimated idiosyncratic firm performance shocks to bank portfolio
outcomes and find equally economically and statistically significant effects. Thus, our
findings on the non-trivial effects of single-name concentration risk on bank outcomes
appear to be not unique to the Norwegian setting. Moreover, our approach is very
tractable and general enough that it could be applied to any other empirical setting with
registers that link borrowers to lenders.

It is well known that bank-dependency has diminished over the past decades in some
countries, e.g. the U.S.. Thus, single-name borrower concentration risk may become
less important in aggregate terms if firms switch increasingly more towards bonds-based
financing. In other words, how unique is portfolio concentration risk to banking? From
numerous applied studies, we observe that portfolio concentration risk is indeed ubiqui-
tous and important for our general understanding of aggregate financial and economic
fluctuations. Studying U.S. banks, Kundu and Vats (2021) find that state-level idiosyn-
cratic shocks transmit through bank networks across states and have macroeconomic
implications. Chodorow-Reich et al. (2021) document granularity and concentration in
portfolios of life insurers and demonstrate how it matters for the equity market. Ca-
manho et al. (2022) use the granular IV methodology in the context of foreign exchange
market fluctuations and fund-level rebalancing decisions and also find significant aggre-
gate effects. An attractive feature that underpins all of these empirical studies is a solid
theoretical basis foundation, i.e. the granular hypothesis (Gabaix, 2011).

To further complement our own empirical findings for Norwegian banks and the stud-
ies just mentioned, we perform an additional simple test of external validity.39 Namely, we
compute the time-varying degree of concentration in equity holdings of U.S. institutional
investors. Specifically, for each institutional investor in the SEC 13F holdings data from

Thomson/Refinitiv we compute the excess Herfindal index as: eHHIi,t =
√∑

j s2
i, j,t −

1
Ni,t

where si, j,t is the share of exposure j in investor i’s portfolio in quarter t and Ni,t is the
number of exposures. We aggregate by taking value-weighted averages for all investors
and also for each individual investor type; we obtain the corrected types from Koijen and
Yogo (2018).

39We thank Ralph Koijen, our discussant, for suggesting this idea.
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Figure 8: Granularity in Equity Portfolios of U.S. Institutional Investors

(a) Aggregate Data
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Notes: This figure plots weighted excess Herfindahl indices for equity portfolios of U.S. institutional investors and corporate loan
portfolios of Norwegian banks. Institutional investor data comes from SEC Form 13F filings and was obtained from Thomson/Refinitiv.
Investor types are from Koijen and Yogo (2018) and have thus been corrected for measurement and labelling errors.

Results are plotted in Figure 8. We observe that in terms of portfolio concentration
the Norwegian corporate loan sector is not very dissimilar to the universe of U.S. equity
investors - the weighted excess Herfindahl is in the 0.1-0.13 ballpark for both situations.
Panel (b) of Figure 8 plots heterogeneity by investor type. We see that loan concentration in
Norwegian banks is closest (in fact, quantitatively almost identical) to that of Investment
Advisors, the category which constitutes more than 70% of the entire sample. All in all,
we therefore conclude that the Norwegian context is not exceptional and our analysis and
conclusions can potentially extend to other circumstances, countries, and asset classes.

5.2 Network Effects

A vibrant new literature emphasizes the role of networks in the amplification and prop-
agation of idiosyncratic financial shocks (Huremovic et al., 2020; Dewachter et al., 2020;
Elliott et al., 2020). In important work, Huremovic et al. (2020) show that bank credit
supply shocks propagate along firm production networks, causing sizable real economic
effects. This presents a potential threat to identification of our firm spillover regressions.
For instance, granular borrowers could be linked to non-granular borrowers not only
via their common lender but also by being an important customer of the non-granular
borrower directly, or vice-versa. If that is the case, production network spillovers could
be an alternative explanation for the positive association between granular credit shocks
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and real outcomes of non-granular borrowers.

Figure 9: Firm Spillovers: Accounting for Production Networks

(a) Firm Capital
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Notes: This figure reports results from either firm-level regressions of year-on-year changes in (log)capital (left panel) or probit
regressions of likelihood of firm bankruptcy (right panel) on changes in the bank-level granular credit shock, instrumented by the GIV.
The sample is restricted only to firms operating in sectors in the Pth percentile of the distribution of maximum inter-sector exposures.
The samples, indicated by their percentile cut-offs P = 5, 6, . . . , 50, are shown on the x-axes and the y-axes show point estimates and
90% confidence bands obtained on each respective sample. In the left panel we report estimation results obtained by running the same
regression specification as in Table 7 Column (3). In the right panel estimation results are obtained from running the same specification
as in Table 8 Column (4).

To alleviate these concerns, we perform a robustness exercise where we use aggregate
two-digit NACE-level input-output tables for the Norwegian economy in order to restrict
attention to non-granular borrowers that are sufficiently downstream, i.e. firms that have
low dependence on the demand from other firms. Specifically, for each pair of sectors i
and j we compute the fraction of sales of i that is accounted for by j - including i’s own
sector - and refer to that as the inter-sector exposure between i and j. We then compute
the maximum inter-sector exposure across all j’s for each i, and restrict attention to firms
from bottom percentiles of that inter-sector exposure measure. Intuitively, such firms
would have low exposure to all other sectors and are thus far downstream, i.e. they sell
primarily to households. For such firms the conjecture is that demand from granular
borrowers would be of limited importance. Thus, if our firm spillover results are indeed
driven solely by production network effects, we should then find no effects for low-inter-
sector exposure firms. A limitation of our approach is that firm-to-firm linkages are not
available.

Figure 9 reports the results. We iteratively restrict the estimation sample to firms
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operating in sectors in the Pth percentile of the distribution of the maximum inter-sector
exposure measure. Firms in the lower percentiles are more downstream. We re-run our
firm capital and bankruptcy regressions for each P in [20,99] (which are plotted on the
x-axis) while always focusing on non-granular firms as defined by the 50th percentile of
the loan share distribution. Specifically, in Panel (a) we present point estimates and 90%
confidence bands for the same regression specification as in Column (3) of Table 7 but
for different Ps. Similarly, in Panel (b) we present point estimates and 90% confidence
bands for the same regression specification as in Column (4) of Table 8 but for different Ps.
From both panels we see that our results remain robustly and quantitatively unaffected
by the degree of inter-sector connectedness. If anything, we notice that the impact on the
probability of bankruptcy (Panel (b)) is somewhat greater for more downstream (low-P)
firms. These findings suggest that granular credit risk spillovers are distinct from and
complementary to production network spillovers that studies such as Huremovic et al.
(2020) emphasize.

5.3 Bank Heterogeneity

A growing literature emphasizes the role of heterogeneity in the financial intermediation
sector for business and financial cycle fluctuations (Corbae and D’Erasmo, 2021; Coimbra
and Rey, 2023; Jamilov and Monacelli, 2020). In this section we ask whether granular credit
shocks have differential effects on bank portfolios. We consider several dimensions of bank
heterogeneity: portfolio risk weights, (log of) risk-weighted assets (RWA), regulatory
capital ratio, loan portfolio Herfindahl (HHI), (log of) number of loans, the liquidity
ratio, and the profitability ratio.40 We compute portfolio risk weights by dividing RWA
by book assets. The regulatory capital ratio is defined as regulatory capital over RWA.
Liquidity is defined as the ratio of cash holdings to book assets. Profitability is defined
as the ratio of profits before taxes to book assets. All characteristics are lagged. For
each characteristic we define a dummy variable based on the median of the respective
lagged distribution. Table 10 presents the results. The dependent variable is the return
on corporate loans at the bank level, as before. Each column reports coefficients for
interactions of GIV-instrumented bank-level firm shocks and dummies for respective
lagged bank characteristics. All specifications include the time and bank fixed effects as
well as the usual set of bank controls.

40We use RWA as a proxy for bank size, broadly defined. We have also experimented with book assets,
book equity, and regulatory capital as alternative size measures. Results do not change. In addition, we
also condition on whether banks are domestically or foreign owned. Baseline results are quantitatively
very close to the sub-sample of privately-owned banks; estimates based on foreign banks are consistently
imprecise.
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Table 10: Bank Outcomes - Heterogeneity

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: Bank Return on Loans (RoA)

Lagged Bank Characteristic: Risk Weights RWA Capital Ratio HHI Loans Number Liquidity Profit

Shock x Low Characteristic 0.104 0.173 0.090 0.068 0.135 0.095 0.109
(0.042) (0.037) (0.040) (0.040) (0.046) (0.045) (0.045)

Shock x High Characteristic 0.137 0.029 0.134 0.138 0.090 0.135 0.126
(0.040) (0.036) (0.039) (0.039) (0.030) (0.038) (0.037)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Instrumented with GIV ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 1208 1208 1208 1211 1211 1211 1211
R2 0.101 0.106 0.101 0.103 0.102 0.102 0.101

Notes: This table reports results from regressions of bank-level returns on corporate loans on GIV-instrumented idiosyncratic shocks
interacted with lagged bank characteristics. In all columns, characteristics are cut based on the 50th percentile. Risk weights are
obtained by dividing risk-weighted assets (RWA) by book assets. The regulatory capital ratio is defined as regulatory capital over
RWA. HHI refers to the within-bank Herfindahl index of loan concentration. Liquidity is defined as cash holdings over book assets.
Profitability is defined as profit before taxes over book assets. All specifications include the following bank controls: lagged total assets,
leverage, liquidity, number of loans, deposit to assets ratio, and financial assets to total assets ratio. Standard errors (in parentheses)
are clustered at the bank level.

From the table we observe several notable results. First, the number of loans does not
materially affect the transmission of granular credit shocks, in the sense that the pass-
through is also significant for banks with a high number of loans (column (5)). Hence
granular credit risk is not merely a “small N” problem. Second, the pass-through is
stronger for banks with low RWA (column (2)) and high capital ratios (column (3)). The
two effects are interconnected, since in the cross section larger banks are more levered and
thus have lower capital ratios.41 Third, the pass-through is twice as large for banks with
high loan portfolio concentration (column (4)). This is reassuring, since given the same
volatility of idiosyncratic firm shocks, higher concentration should make banks more
exposed to shocks stemming from the right tail of the loan share distribution.

Last but not least, in column (1) we see that banks with higher risk weights tend to be
more affected by granular credit shocks.42 This is potentially an important finding because
credit concentration risk and the risk-taking channel may form complementarities that
could impact an array of macroeconomic outcomes, ranging from the financial boom-and-

41The observation that smaller banks are more exposed to granular credit shocks is in line with the
existing theories that emphasize the role of bank size heterogeneity in the transmission of aggregate and
idiosyncratic disturbances (Stavrakeva, 2019; Davila and Walther, 2020; Jamilov and Monacelli, 2020). In
particular, smaller banks generally tend to have a greater balance sheet sensitivity with respect to exogenous
shocks.

42Risk weights are not correlated with any of the proxies of bank size: RWA, capital, book assets, or book
equity. They are also uncorrelated with the bank-level share of corporate credit to total assets.
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Table 11: Bank Outcomes - Inspecting the Risk-Taking Channel

(1) (2) (3)

Second Interaction: Low RWA High RWA Low CapRatio High CapRatio Low HHI High HHI

Shock x Low RW 0.156 -0.005 0.070 0.119 0.056 0.117
(0.050) (0.058) (0.054) (0.051) (0.067) (0.048)

Shock x High RW 0.212 0.061 0.108 0.168 0.075 0.187
(0.070) (0.039) (0.058) (0.062) (0.051) (0.063)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1208 1208 1208 1208 1208 1208
R2 0.105 0.105 0.101 0.101 0.103 0.103

(4) (5) (6)

Second Interaction: Low Loans Number High Loans Number Low Liquid High Liquid Low Profit High Profit

Shock x Low RW 0.120 0.079 0.060 0.131 0.114 0.086
(0.063) (0.043) (0.076) (0.048) (0.057) (0.057)

Shock x High RW 0.162 0.105 0.127 0.149 0.095 0.163
(0.065) (0.045) (0.047) (0.074) (0.049) (0.059)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1208 1208 1208 1208 1208 1208
R2 0.102 0.102 0.101 0.101 0.101 0.101

Notes: This table reports results from regressions of bank-level returns on corporate loans on GIV-instrumented idiosyncratic shocks,
double interacted with bank risk weights (RW) and additional characteristics. In all specifications, characteristics are cut based on
the lagged 50th percentile. For example, column (1) presents estimates for banks with low risk weights and low risk-weighted assets
(RWA), low risk weights and high RWA, high risk weights and low RWA, and high risk weights and high RWA. Similarly for all other
columns. Risk weights are obtained by dividing risk-weighted assets (RWA) by book assets. The regulatory capital ratio (CapRatio)
is defined as regulatory capital over RWA. HHI refers to the within-bank Herfindahl index of loan concentration. NumLoans refers to
the (log) number of loans in the portfolio. Liquid refers to the liquidity ratio, defined as cash holdings over book assets. Profit refers
to the profitability ratio, defined as profit before taxes over book assets. All specifications include the following bank controls: lagged
total assets, leverage, liquidity, number of loans, deposit to assets ratio, and financial assets to total assets ratio. Standard errors (in
parentheses) are clustered at the bank level.

bust cycle to the transmission of monetary policy (Bruno and Shin, 2015).43 In order to
inspect and better understand this mechanism, we run an additional exercise below.

The risk-taking channel We now examine the impact of granular credit risk on bank
returns, while interacting the granular credit risk shock with both portfolio risk weights
and other bank characteristics. Table 11 reports the results. Each column reports estimates
from a second interaction of the respective characteristic with the GIV-instrumented shock
interacted with risk weights. For example, column (1) shows results for a double inter-

43It is possible that banks with high risk weights are exposed to firms that are inherently riskier, similarly
to the “evergreening” behavior analyzed by Peek and Rosengren (2005) or assortative matching in the credit
market as in Chang et al. (2021).
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action of the shock measure with risk weights and risk-weighted assets. As before, high
and low dummies are based on the median of the each respective variable’s lagged dis-
tribution. Overall, we observe that (with the exception of the left column in specification
(6)) estimates for banks with high risk weights are always higher than for banks with low
risk weights. In other words, estimates corresponding to the “Shock x High RW” row
are always greater than estimates from the “Shock x Low RW” row, regardless of what
the second interaction is. This suggests that the credit concentration risk and risk-taking
channels are positively associated.

The most notable are results in columns (1), (3), and (6). These suggest that the pass-
through of granular credit shocks, conditional on the sample of banks with high risk
weights, is stronger if banks are small, have concentrated loan portfolios, and record high
profits. The result on profits (column (6)) is particularly interesting since it is consistent
with the risk-taking channel: in good states of the world, i.e. when individual firm
performance is high, banks with low risk aversion build riskier, concentrated portfolios
and record higher profits. However, as our paper argues, this comes at the (seemingly
unhedged) cost of greater exposure to granular credit risk and eventual portfolio losses
during the bad state, i.e. when firm performance is low. Overall, our results add an
interesting new angle of portfolio concentration to the literature on endogenous financial
cycles driven by risk taking of heterogeneous financial intermediaries (Coimbra and Rey,
2023).

5.4 Origins of Large Exposures

The ubiquitous nature of concentration in the portfolios of banks as well as other financial
actors is seemingly at odds with standard models in finance (Merton, 1987). Diversifi-
cation as an equilibrium outcome is a benchmark takeaway of classical portfolio theory
(Markowitz, 1952). Deviations from this “null hypothesis” merit a special discussion and
understanding potential causes of concentration is useful for the rationalization of our
empirical findings. In what follows, we discuss several potential causes of credit con-
centration. Our benchmark explanation is the borrower size distribution for which we
provide a simple theoretical model in G. We also briefly discuss asymmetric information,
home bias, and behavioral biases as alternative frictions and channels.

Firm size distribution Credit concentration could be a by-product of the underlying firm
size distribution also being fat tailed, which is definitely the case for Norway. Studies by
Carvalho and Gabaix (2013) and Carvalho and Grassi (2019), among others, have shown
that the presence of a small number of large firms can explain a substantive percentage of
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aggregate macroeconomic fluctuations. Similarly, Gaubert and Itskhoki (2021) show that
up to 20% of international export intensity can be attributed to granular firms. In the case
of bank lending, if large firms are also, on average, large borrowers - a condition which
is true in our data - the Pareto rate of the credit share distribution could be driven by the
Pareto rate of the firm size density.

In order to explore this notion, we write down a simple extension of the Gabaix (2011)
granular economy in Section G of the Online Appendix. The core idea is that the variance
of bank loans depends on the distribution of firm-level demand for loans, which is a power
function of firm size. We provide conditions under which, conditional on firm sizes being
drawn from a power law distribution, the distribution of bank loans would also have fat
tails. If such conditions are satisfied, loan variance decays at a slower rate than 1

√
N

with
N is the number of firms in the economy. In other words, idiosyncratic shocks to firms
- through the loan demand function - pass-through directly to bank portfolios and have
aggregate implications. Importantly, we are able to prove that the sufficient condition
for “granularity” of the loan share distribution is the following inequality: 1 < ατ < 2
where α ≥ 1 is the power law exponent of the firm size distribution and τ is the inverse of
the elasticity of firm loan demand with respect to firm size. In words, ατ is a measurable
sufficient statistic that determines the speed of decay of loan variance. When taken directly
to our Norwegian loan and firm data, we find that the ατ object is firmly within the [1,2]
bounds. Thus, our empirically-validated theoretical model confirms that credit risk is
granular.

While this is a very natural explanation for the observed credit concentration, we note
that in our data we observe substantial heterogeneity in portfolio Herfindahl indices across
banks, even among lenders of the same region. Banks do not all hold the same portfo-
lio. Thus, firm size concentration is not enough to completely explain either the home
bias in bank lending or portfolio concentration. Financial frictions - be it informational,
technological, or behavioral - are important as well. We discuss them briefly below.

Asymmetric information In practice, costly information could prevent banks from hold-
ing fully diversified loan portfolios (Grossman and Stiglitz, 1980). When information is
a tool for conditional return variance reduction, equilibrium under-diversification is pos-
sible (Van Nieuwerburgh and Veldkamp, 2010; Kacperczyk et al., 2016). Concentrated
lending could also be a by-product of persistent credit relationships. When information
acquisition on new clients is costly, lenders may find it optimal to do business with a
recurring set of borrowers, for instance by increasing the number of new commitments
per relationship such as offering additional fixed-term loans or extending new credit lines
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(Sufi, 2007). Along the intensive margin, an increase in the exposure of an informed lender
signals a higher quality of the underlying borrower, thereby reducing the cost of asym-
metric information (Leland and Pyle, 1977). In the credit market equilibrium, the price of
the loan contract depends on the degree of information asymmetry and the magnitude of
idiosyncratic fluctuations. Ivashina (2009) argues that there is a trade-off between diver-
sification and asymmetric information which, in equilibrium, determine the return on the
loan.

Home bias Home bias is a perennial stylized fact in international finance, banking, and
macroeconomics (Coeurdacier and Rey, 2013). Different underlying theories - be it infor-
mation frictions of behavioral - could materialize as observable home bias. For example,
Van Nieuwerburgh and Veldkamp (2009) show in a rational inattention framework that
investors may choose to learn only about assets for which they had an information advan-
tage to start with (such as home assets), thus amplifying initial information asymmetries
and generating home bias and concentration in portfolio holdings. Juelsrud and Wold
(2020) document a substantial degree of within-county bias in the Norwegian banking
system (see Figure D4 in the Online Appendix). Using loan-level data, Juelsrud and
Wold (2020) show that over 2003-2015 the average proportion of bank credit to firms
that are headquartered in the same region as the lender was 55%. This compares to a
random-assignment counterfactual of less than 10%, implying a home bias of 45%.

Behavioral biases . Huberman (2015), among others, shows that some investors tend
to ignore portfolio diversification theory and invest in familiar assets. Fuster et al. (2010)
reviews the extensive literature on the departures from rational expectations in finance
and macroeconomics. The exclusion restriction of our instrument in Section 3.4 would be
valid under this “familiarity effect” at the bank level. In that case, over-exposure of bank
i to firm j at time t is largely independent of the firm’s present characteristics and is instead
a function of i’s persistent subjective beliefs. Thus, behavioural biases of this kind would
also be compatible with our empirical approach.

For the purpose of the empirical analysis, we note that the aforementioned classes of
models that we put forward to explain the origin of credit concentration (firm size distri-
bution, asymmetric information and home bias, and behavioral biases) are all compatible
with our findings. Those theories would have, however, different normative implications.
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5.5 Additional Results

In the Online Appendix we provide numerous supplementary results and perform a
battery of robustness tests. In Appendix A we run several sets of factor analyses at the
firm and bank levels, thus relaxing many of our identifying assumptions and generalizing
the baseline empirical approach. Appendix B provides further details on the granular
IV, particularly its relationship to the Bartik instrument and an analytical exposition of
instrument relevancy and power. Appendix C provides a narrative-based discussion of
our estimated firm shock measure, highlighting its idiosyncratic and unexpected nature.
Appendix D presents many additional empirical results, including on firm heterogeneity,
loan-level asymmetric effects, and the pricing and compensation of granular credit risk.
Appendix E presents all the robustness checks that we have run. Those include, among
others, pairwise correlation tests and placebo regressions. Appendix F shows that all
our main results are reproduced if we instead define the granular credit shock as the
shock to the top 1 % of borrowers in terms of loan shares. Finally, Appendix G lays out
our theoretical model, which provides an analytical motivation for our discussion of the
origins of credit concentration in Section 5.4.

6 Conclusion

This paper has developed the first bottom-up causal quantification of single-name credit
concentration risk on bank-level outcomes and on the economy. While the previous lit-
erature focused on the effects of sectoral or geographic exposure risk, we drill down to
the very granular level of individual loans. Empirically, we show that there is a causal
link between idiosyncratic firm shocks and returns on bank credit. Unexpected shocks to
firm value-added affect loan-level and bank-level performance. We capture strong asym-
metries associated with the debt contract structure by showing that negative firm shocks
lead to a reduction in bank returns, while positive shocks have zero impact. We explored
numerous dimensions of heterogeneity at all levels of aggregation.

We find strong evidence of a second-round pass-through effect of granular borrower
risk onto other firms. Banks, in response to negative shocks to their granular borrowers,
cut credit supply and increase interest rates on loans to their non-granular borrowers.
Affected non-granular firms, in turn, reduce investment in physical capital. Affected
firms are also more likely to file for bankruptcy following a negative granular shock to
their credit provider. These results suggest that single-name credit concentration risk
carries significant implications for the macroeconomy.
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The first key message of the paper is therefore that idiosyncratic firm shocks do not
wash out and still matter at the level of the bank portfolio. Conventional wisdom that
banks are subject only to aggregate risk due to pooling and the law of large number is not
borne out in the data. Concentration risk matters quantitatively. Our evidence from non-
interest income data further suggests that banks do not compensate for loan book losses
through earnings from alternative sources such as derivatives or equity holdings. The
second key message of the paper is that there are important granular credit risk spillovers
affecting the real economy.

Methodologically, we make progress on identification and formalization of firm
demand-side shocks at the level of bank portfolios by employing the “granular instru-
ment variable” approach developed in the influential recent work by Gabaix and Koijen
(2022a,b). This method takes advantage of the fact that the distribution of loan shares
features a fat tail and allows us to rigorously analyze pass-through of granular risk. We
also present a simple theory of the “granularity of credit” building on the well-known
fact that the size of firms follows a power law distribution. Using our high quality com-
prehensive dataset we can estimate the parameters of the Pareto distribution governing
the distribution of loans and confirm its granularity.

Our results have implications for the regulation of large credit exposures. Our pass-
through estimates in Table 3 could be used to compute the granular Value-at-Risk, i.e. bank
capital that is at risk if a granular borrower suffers a bad negative shock. Our estimate
of the loan share Pareto power in Section G could be used as a tool for understanding
when banks are becoming prone to granular credit risk. A drop in the Pareto power
estimate to 2 or below could constitute a “red flag” for prudential Authorities. In practice,
the parameter could be computed for each financial institution in the cross section. The
system-wide weighted average Pareto estimate could become a novel time-series indicator
of aggregate concentration whose changes could track fluctuations in system-wide credit
concentration risk.
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A Factor Analysis

A.1 Factor Extraction at the Firm Level

Our baseline firm shock measure is the residual ϵ j,t obtained from estimating equation (2)
in main text, repeated here:

ln VA j,t = α j + θg( j),t + β1 ln K j,t + β2 ln W j,t + λ
′Xj,t + ϵ j,t. (A1)

The residual ϵ j,t, although orthogonal to a range of time-varying firm characteristics and
fixed effects, may still contain components which are common across firms. To address this
concern we now consider a robustness exercise in which we extract both parametric and
non-parametric factors explicitly. Formally, we assume that the residual can be expressed
as:

ϵ j,t = δ
x′
j,tη

x
t + δ

′

jηt + u j,t (A2)

for a vector of parametric ηx
t and non-parametric ηt factors. For the parametric factors,

the firm-specific time-varying loading vector δx
j,t is assumed to be a function of observable

firm characteristics. For the non-parametric factors we assume a constant firm-specific
loading vector δ j. The goal is to estimate both common components (δx′

j,tη
x
t and δ′jηt) and

to replace our firm shock measure ϵ j,t with a more robust alternative u j,t.
We proceed in two steps. First, we extract parametric common components by estimat-

ing a richer version of equation (A1), in which we interact all time-varying firm-specific
regressors (ln K j,t, ln W j,t,Xj,t) with year dummies. Hence, δx

j,t is given by the vector of
explanatory variables in equation (A1). Formally, we re-estimate equation (A1) assuming
time-varying coefficients:1

ln VA j,t = α j + θg( j),t + β1,t ln K j,t + β2,t ln W j,t + λ
′

tXj,t + ϵ̌ j,t. (A3)

In the second step, we perform Principal Component Analysis (PCA) on the residual
ϵ̌ j,t by estimating:

ϵ̌ j,t = δ
′

jηt + u j,t (A4)

Since our firm panel is unbalanced, we employ an iterative Expectation Maximization
(EM) algorithm as in Gabaix and Koijen (2022b), and estimate principal components
recursively. Starting with the first factor, the algorithm repeatedly regresses ϵ̌ j,t on η1

t and
then ϵ̌ j,t on δ1

j until convergence. For factors f = 2, . . . , f max, least squares iterations are

1We make one adjustment relative to the specification in equation (A1), by replacing the quadratic age
specification with one-year age fixed effects.
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Table A1: Loan Outcomes with Firm Factors Extraction

(1) (2) (3)

Dep. Var.: Return on Loan

(1) Firm Shock: ϵ̌ j,t 0.307 0.307 0.333
(0.016) (0.017) (0.018)

(2) Firm Shock: u1
j,t 0.279 0.279 0.299

(0.016) (0.017) (0.018)
(3) Firm Shock: u2

j,t 0.239 0.237 0.255
(0.016) (0.017) (0.018)

Bank x Industry x Year FE - ✓ -
Bank x Industry x Year x Loan-type x County FE - - ✓

Notes: This table reports results from the regression of loan-level returns on loans on three alternative measures of idiosyncratic firm
shocks. Row (1) refers to the shock measure after extracting parametric common components. Row (2) refers to the shock measure after
extracting parametric common components and one latent common component. Row (3) refers to the shock measure after extracting
parametric common components and two latent common components. All shocks have been normalized by their standard deviations.
Standard errors (in parentheses) are double clustered at the firm-year level.

performed on the remaining residual from equation (A4) after extracting f−1 components,
denoted u f−1

j,t .2 In our analysis below we consider f max = 2 components and denote by u1
j,t

and u2
j,t the residuals obtained after extracting one and two factors, respectively.3

We then run our loan-level regressions based on equation (3) in main text with the
three new estimated firm shock measures: ϵ̌ j,t, u1

j,t and u2
j,t. In other words, we substitute

the baseline shock variable ϵ j,t with potentially more refined and idiosyncratic versions.
In order to obtain bank-level estimates, we proceed as in the main text. First, we aggregate
by computing loan size-weighted averages of the three new shock measures ¯̌ϵi,t, ū1

i,t, and
ū2

i,t, where

x̄i,t =
∑

j∈P(i,t)

si, j,tx j,t (A5)

for x ∈ (ϵ̌,u1,u2). Second, we construct three new Granular IVs GIVϵ̌i,t, GIVu1

i,t , and GIVu2

i,t ,
as in equation (7) in the main text, where now

GIVx
i,t =

∑
j∈P(i,t)

(
si, j,t −

1
Ni,t

)
x j,t (A6)

for x ∈ (ϵ̌,u1,u2). Third, we run our IV regressions for ¯̌ϵi,t, ū1
i,t, and ū2

i,t, instrumenting each

2Following the suggestion in Stock and Watson (2016), iterations are initiated with factors that are
extracted from the balanced sub-sample of firms.

3The f max threshold is chosen by performing a standard PCA on a balanced sub-sample of firms, and
applying the ICp2 criterion in Bai and Ng (2002) to determine the number of factors.
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Table A2: Bank Outcomes with Firm Factors Extraction - New Shocks, New Instruments

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Pooled Positive Negative Pooled Positive Negative

(1) Granular Credit Shock: ¯̌ϵi,t 0.118 0.125 0.106 0.015 0.212 0.105 0.027 0.186
(0.027) (0.026) (0.035) (0.081) (0.075) (0.030) (0.071) (0.073)

(2) Granular Credit Shock: ū1
i,t 0.092 0.092 0.079 -0.117 0.160 0.072 -0.087 0.136

(0.025) (0.024) (0.031) (0.078) (0.073) (0.029) (0.075) (0.068)
(3) Granular Credit Shock: ū2

i,t 0.106 0.100 0.090 -0.082 0.136 0.083 -0.067 0.119
(0.027) (0.025) (0.032) (0.072) (0.058) (0.029) (0.072) (0.053)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bank Controls - ✓ - - - ✓ ✓ ✓

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks. Columns (1)-(2)
are standard OLS, while columns (3)-(8) instrument the weighted shock with a granular IV. Row (1) is based on the shock ϵ̌ j,t and
instrument GIVϵ̌i,t, which refer to the residual after extracting parametric common components. Row (2) is based on the shock u1

j,t and

instrument GIVu1

i,t , which refer to the residual after extracting parametric common components and one latent common component.

Row (3) is based on the shock u2
j,t and instrument GIVu2

i,t , which refer to the residual after extracting parametric common components
and two latent common components. Standard errors (in parentheses) are clustered at the bank level.

with their respective GIVϵ̌i,t, GIVu1

i,t , and GIVu2

i,t .
Table A1 reports loan outcomes after factor extraction. Columns (1)-(3) are based on

the same set of controls and fixed effects as in columns (1)-(3) of Table 2. Rows (1)-(3)
show results for the three new shock measures. Recall that baseline estimates from Table
2 are in the 0.334-0.361 range. We see that after the extraction of parametric and two non-
parametric factors, estimates are still large, statistically significant, and quantitatively very
close to our baseline results.

Table A2 reports results at the bank level. Columns (1)-(8) are based on the same
specifications and sets of controls and fixed effects as columns (1)-(8) in Table 3 from
main text. Recall that baseline estimates from Table 3 are roughly 0.117 and 0.180 for the
specifications with pooled and only negative shocks, respectively. We find that our strictest
model, which extracts parametric and two non-parameteric factors, leads to estimates of
0.083 and 0.119 for pooled and only negative shocks specifications, respectively. All
coefficients are very similar to our baseline results and are statistically significant at least
at the 5% level.

We now consider an alternative approach where instead of replacing the baseline shock
measure ϵ j,t itself, we keep ϵ j,t as the shock variable but build the Granular IV based on the
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Table A3: Bank Outcomes with Firm Factors Extraction - Old Shocks, New Instruments

(1) (2) (3) (4) (5) (6)

Dependent Variable: Bank Return on Loans (RoA)

Pooled Positive Negative Pooled Positive Negative

(1) GIVϵ̌i,t 0.110 0.003 0.182 0.111 0.035 0.165
(0.035) (0.078) (0.071) (0.030) (0.070) (0.068)

(2) GIVu1

i,t 0.114 -0.021 0.216 0.112 0.035 0.189
(0.032) (0.092) (0.074) (0.028) (0.095) (0.065)

(3) GIVu2

i,t 0.144 0.039 0.266 0.133 0.061 0.234
(0.038) (0.140) (0.084) (0.032) (0.135) (0.071)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Bank Controls - - - ✓ ✓ ✓
Instrumented with GIV ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks ϵ̄i,t instrumented by
three alternative Granular IVs. In row (1) the GIV is based on ¯̌ϵi,t, which refers to the shock measure after extracting parametric common
components. In row (2) the GIV is based on ū1

i,t, which refers to the shock measure after extracting parametric common components

and one latent common component. In row (3) the GIV is based on ū1
i,t, which refers to the shock measure after extracting parametric

common components and two latent common components. Positive (negative) shock specifications include only observations in which
the bank level shock ϵ̄i,t is above (below) zero. Standard errors (in parentheses) are clustered at the bank level.

three new shocks GIVϵ̌i,t, GIVu1

i,t , and GIVu2

i,t . In other words, we keep the same endogenous
regressor as in the main text, but instrument it with new, more robust instruments. Results
are reported in Table A3. All estimates are quantitatively in line with our baseline results.
Coefficients from specifications with pooled or negative only shocks are all statistically
significant at least at the 5% level.

A.2 Factor Extraction at the Bank Level

By subtracting the unweighted mean from bank-level weighted firm shocks, our Granular
IV in equation (7) in the main text removes a common bank factor with loadings δi assumed
to be identical across the bank’s firm borrowers. If the loadings are truly heterogeneous,
this procedure might not be sufficient to ensure exogeneity of the instrument. Rather
than constructing an instrument based on the assumption that a bank’s factor influences
all its clients identically, we now consider a generalized procedure taking into account
heterogeneous loadings of the bank factor.

We build on the procedure in Section A.1, where we in the first step remove parametric
factors (to obtain ϵ̌ j,t) and in the second step remove non-parametric factors (to obtain u j,t).
But now, rather than doing the non-parametric factor extraction jointly for all firms, the
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Table A4: Bank Factors Extraction - Controlling for Factors Directly

(1) (2) (3) (4)

Dep. Var.: Bank Return on Loans (RoA)

OLS Instrumented with GIV

Pooled Pooled Positive Negative

Granular Credit Shock 0.127 0.109 0.033 0.182
(0.025) (0.028) (0.070) (0.067)

Bank FE ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Bank Controls ✓ ✓ ✓ ✓
ηi,t controls ✓ ✓ ✓ ✓

Notes: This table reports the results from regressing bank-level return on loans on bank-level aggregated firm shocks ϵ̄i,t. The Granular
IV is constructed as the difference between the size-weighted and unweighted means of the firm shock ϵ j,t. Positive (negative) shock
specifications include only observations in which the bank shock ϵ̄i,t is above (below) zero. In addition to the standard set of bank
controls, all regressions include the first two latent bank-level factors obtained from running PCA separately on each banks’ sample
of borrowers using equation (A7) to the set of bank controls. Standard errors (in parentheses) are clustered at the bank level.

second step is performed separately at the bank level. This implies running the EMPCA
algorithm separately on each bank’s sample of borrowers, i.e. for all firms j borrowing
from bank i at time t:

ϵ̌∗i, j,t = η
′

i,tδi, j + ui, j,t , ∀ j ∈ P(i, t) (A7)

where ϵ̌∗i, j,t denotes the demeaned firm shock ϵ̌ j,t, and ϵ̌ j,t is the firm shock residual net
of parametric factors from equation (A3) in Section A.1 . The demeaning is performed
cross-sectionally at the bank level, such that:

ϵ̌∗i, j,t = ϵ̌ j,t −
1

Ni,t

∑
j∈P(i,t)

ϵ̌ j,t , ∀ j ∈ P(i, t)

where Ni,t, as before, denotes bank i′s number of corporate borrowers j in year t.4 For each
bank, we extract up to f = 2 factors, following the algorithm outlined in A.1, and denote
the associated residuals u f

i, j,t, with f ∈ {1, 2}.5

Our main exercise is to use the extracted bank factors η1
i,t and η2

i,t as explicit controls in
our bank-level regressions. This approach is similar to the application proposed in Gabaix

4Notice that since this demeaning is performed at the level of the bank, the demeaned firm shock will
vary at the bank-firm level i, j.

5Because very few banks in our sample have fully balanced sub-samples (portfolios) with many borrow-
ers, we now initiate the algorithm with random guesses of realizations for each factor f (η f

1 , η
f
2 , ..., η

f
T) with

100 different seeds and pick the specification that produces the lowest average sum of squared residuals
u f max

j,t after extracting f max = 2 components.

7



and Koijen (2022b). Specifically, we run the same specification as in equation (5) in the
main text, but adding the extracted factors as control variables:

Rb
i,t = αi + αt + β1ϵ̄i,t + β2η

1
i,t + β3η

2
i,t + ω

′

i,tγ + νit (A8)

Results are reported in Table A4. In every column we have added the two extracted factors
(η1

i,t, η
2
i,t) to the list of our usual bank-level controls. Results are essentially unchanged rela-

tive to our baseline estimation. This indicates that endogeneity issues due to unobserved
time-varying bank factors are minor.

As an additional robustness check, rather than controlling directly for the extracted
bank factors in the regression, we construct a new GIV instrument for ϵ̄i,t based on the
residuals extracted from equation (A7):

GIVx
i,t =

∑
j∈P(i,t)

(
si, j,t −

1
Ni,t

)
xi, j,t (A9)

for x ∈ (u1,u2). The GIVs based on the residuals after either one or two extracted factors
are thus denoted GIVu1

i,t and GIVu2

i,t , respectively. Results from this exercise is reported
in Table A5. Our main focus is on columns (4) and (6). We see that all results remain
qualitatively robust, however point estimates become noisier.6

6Because the panel is highly unbalanced, the effective time dimension is very small. This means that if
use more than two factors, we may be over-fitting the data. In other words, with more factors we could
be falsely re-labeling truly idiosyncratic variation as common shocks, which in turn makes estimation less
accurate. Gabaix and Koijen (2022b) discuss a similar issue.
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Table A5: Bank Factors Extraction - New Instruments

(1) (2) (3) (4) (5) (6)

Dependent Variable: Bank Return on Loans (RoA)

Instrumented with GIV

Pooled Positive Negative Pooled Positive Negative

(1) GIVu1

i,t 0.100 0.089 0.136 0.093 0.097 0.103
(0.039) (0.143) (0.096) (0.032) (0.121) (0.082)

(2) GIVu2

i,t 0.126 0.168 0.230 0.102 0.146 0.205
(0.053) (0.153) (0.235) (0.044) (0.118) (0.207)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Bank Controls - - - ✓ ✓ ✓

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks ϵ̄i,t, instrumented
by two alternative Granular IVs. The Granular IVs in rows (1)-(2) are constructed as the difference between the size-weighted
an unweighted means of firm shocks u1

i, j,t and u2
i, j,t, respectively, obtained from running PCA separately on each bank’s sample of

borrowers using equation (A7). These are the residuals remaining after extracting 1 and 2 common components, respectively, at the
bank level. Positive (negative) shock specifications include only observations in which the bank shock ϵ̄i,t is above (below) zero. Bank
controls include lagged total assets, leverage, liquidity, number of loans, deposit to assets ratio and financial assets to assets ratio.
Standard errors (in parentheses) are clustered at the bank level.

A.3 Correlated Bank Factors

Now we consider a related, but different deviation from the baseline GIV. Even with
homogeneous loadings, the subtraction of the unweighted mean in equation (7) in the
main text might not be enough to ensure orthogonality between the GIV and the bank-
level error term if the bank’s customer base also borrows from other banks. To see this,
consider the following general representation of the firm-level shock equation (6) in the
main text:

ϵ j,t =
∑

k

Ikj,tη
′

k,tδk + e j,t (A10)

where the indicator function Ikj,t equals 1 if firm j borrows from bank k in year t, η′k,t and
δk are vectors of bank k factors and loadings, and e j,t a residual defined to be orthogonal
to all bank factors. In this case, the residual in equation (6) which the GIV attempts to
proxy, depends on other banks’ factors ui, j,t =

∑
k,i I

k
j,tη
′

k,tδk + e j,t. If other banks factors
ηk,i correlates with bank i’s structural error term νi,t in equation (5) this may invalidate
instrument exogeneity.

To address this issue we generalize the granular instrument in equation (7) in the main
text by removing not only the bank i’s own factor, but also bank factors associated with
all the banks that firms in the setP(i, t) (which we use to denote the set of firms that bank i

9



Table A6: Correlated Bank Factors

(1) (2) (3) (4) (5) (6)

Dependent Variable: Bank Return on Loans (RoA)

Instrumented with GIV

Pooled Positive Negative Pooled Positive Negative

Granular Credit Shock 0.118 0.006 0.210 0.118 0.048 0.189
(0.033) (0.076) (0.064) (0.028) (0.067) (0.062)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Bank Controls - - - ✓ ✓ ✓

Notes: This table reports results from regressing bank-level return on loans on bank-level aggregated firm shocks ϵ̄i,t, instrumented
by an alternative Granular IV. The Granular IV constructed as the difference between the size-weighed and unweighted means of ϵ̂ j,t,
obtained from equation (A11). Positive (negative) shock specifications include only observations in which the bank shock ϵ̄i,t is above
(below) zero. Bank controls include lagged total assets, leverage, liquidity, number of loans, deposit to assets ratio and financial assets
to assets ratio. Standard errors (in parentheses) are clustered at the bank level.

lends to in year t) borrow from at time t. To do so, we run the following dummy variable
regression:

ϵ j,t =
∑

k

Dk, j,t + ϵ̂ j,t (A11)

where Dk, j,t is a dummy variable equal to 1 if firm j borrows from bank k in year t. We then
construct the instrument as the difference between the size-weighed and unweighted
means of the residuals ϵ̂ j,t. Results from using this generalization of the GIV are pre-
sented in Table A6 which shows that the bank-level impact of granular shocks remain
quantitatively unchanged compared to the results reported in Table 3 in the main text.
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B Details on the Granular IV

B.1 Relation to Shift-Share Instruments

In this appendix we discuss how our granular IV strategy relates to the very widely used
shift-share approach. For completeness, we re-state the definition of the granular IV:

ZGIV
i,t =

∑
j∈P(i,t)

si, j,tϵ j,t −
1

Ni,t

∑
j∈P(i,t)

ϵ j,t

Following the exposition in Borusyak et al. (2022), the shift-share instrument that is
applied to our setting can be defined as:

ZSS
i,t =

∑
j∈P(i,t)

si, j,tϵ j,t (B1)

In words, ZSS
i,t is our loan share-weighted weighted firm shock ϵ j,t, which in turn

equals to the sum of bank factor loadings and the loan share-weighted sum of ui, j,t. Now,
exclusion restrictions for the ZGIV

i,t and ZSS
i,t can be summarized, respectively, as follows:

E


 ∑

j∈P(i,t)

(
si, j,t −

1
Ni,t

)
ui, j,t

 νi,t

 = 0 (B2a)

E


η′i,tδ + ∑

j∈P(i,t)

si, j,tui, j,t

 νi,t

 = 0 (B2b)

In the limiting case of large loan portfolios (large N), the two restrictions are identical
except for the presence of bank factor loadings in B2b. In the case of small N, the appro-
priate definition of the weights in B2a becomes the excess loan share distribution; apart
from this nuance the two conditions are once more the same. Importantly, the term η′i,tδ
never vanishes out in B2b. In addition to requiring either loan shares or firm shocks to be
randomly assigned, the Bartik instrument’s exclusion restriction also demands η′i,tδ to be
uncorrelated with the structural error. In other words, the shift-share instrument requires
strictly more assumptions than the GIV. Even though our bank-level specifications include
an array of controls, this could be problematic since accounting and controlling for every
measurable time-varying bank characteristic is unfeasible. Therefore, the GIV is more
promising for achieving identification in our particular setting because bank factors get
purged out mechanically.

This does not hold generally since, as discussed in Gabaix and Koijen (2022a), the GIV
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is not necessarily appropriate for cross-sectional settings such as Autor et al. (2013) where
idiosyncratic shocks are hard to construct. In our context, however, such shocks could
be computed and, as we have argued extensively in main text, could also be as-good-as-
randomly assigned.

B.2 Instrument Relevancy

Suppose we have one bank and a fixed number of firms N with constant loan shares s j. Let
the firm shock be decomposed into two mean-zero orthogonal components: a common
bank factor and a truly i.i.d. idiosyncratic component:

ϵ j = η + u j (B1)

with variances σ2
η and σ2

u, where we have dropped the time subscript. The granular
instrument can be written as:

ZGIV =

N∑
j

(s j −
1
N

)ϵ j =

N∑
j

s̃ jϵ j =

N∑
j

s̃ ju j (B2)

where the last equality follows from
∑N

j s j = 1, and s̃ j = s j − 1/N is the loan share in excess
of the homogeneous share 1/N. The endogenous covariate is given by:

ϵ̄ =
N∑
j

s jϵ j = η +
N∑
j

s ju j (B3)

The variance of the instrument and endogenous covariate can be written as:

σ2
GIV = σ2

u

N∑
j

s̃2
j (B4)

σ2
ϵ̄ = σ2

η + σ
2
u

N∑
j

s2
j (B5)
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where in the last equation we exploit the orthogonality between η and u. The covariance
is:

Cov(ZGIV, ϵ̄) = Cov(
N∑
j

s̃ ju j, η +
N∑
j

s ju jϵ j) (B6)

= Cov(
N∑
j

s̃ ju j,+
N∑
j

s ju jϵ j) (B7)

=

N∑
j

N∑
i

s̃ jsiCov(u j,ui) (B8)

where the last equality follows from the bilinearity of covariances. When the shocks u j

are truly iid, we have that Cov(u j,ui) = 0 ∀i , j, and the expression simplifies to:

Cov(ZGIV, ϵ̄) = σ2
u

N∑
j

s̃ js j (B9)

The sum of the product of excess and actual loan share is simply the excess Herfindahl

eHHI B
N∑
j

s̃ js j =

N∑
j

s̃2
j − 1/N (B10)

It follows that the correlation between the instrument and the endogenous covariate can
be expressed as

Cor(ZGIV, ϵ̄) =
Cov(ZGIV, ϵ̄)√

Var(ZGIV)Var(ϵ̄)
(B11)

=
σ2

ueHHI√
σ2

u(
∑

s̃2
j )(σ

2
η + σ

2
u
∑

s2
j )

(B12)

Dividing through by σ2
u and noting that

∑
s̃2

j = eHHI and
∑

s2
j = HHI we get that:

Cor(GIV, ϵ̄) =

√√
eHHI

σ2
η

σ2
u
+HHI

, (B13)

which is the equation shown in Section 3.4 of main text.
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C Shock Narratives

In this section we validate our baseline idiosyncratic firm shock ϵ j,t with a narrative-
based approach. It is important to confirm that ϵ j,t truly reflect economically meaningful
information about firm performance. We focus on the bottom 1st percentile of realizations
of ϵ j,t in the final shock distribution used in our analysis and search through the Norwegian
news media for corresponding narratives.7 In a lot of cases, some of which are outlined
below, we find that our idiosyncratic shock matches actual, sizable economic events.

One of the most adverse shocks in our sample was experienced by Hera Vekst - a waste
management company - in 2008. For that year, we estimate an unexpected idiosyncratic
shock ϵ j,t of -1.39, corresponding to approximately an unexpected drop in value added
of -139%. This drop was seemingly generated by the sudden closure of the company’s
main facility, enforced by local authorities. Local authorities enforced the closure due
to the company’s repeated violation of air pollution standards. According to local news
reports, the smell from the waste management facility was ”far in excess of what the local
population should tolerate” (nrk.no, 2011).

The company Nergard Sild, a mid-sized herring farmer, experienced an idiosyncratic
shock ϵ j,t of -1.2 in 2010 according to our estimates. National news reports attributed this
loss to over-investment in a processing facility for herring (nrk.no, 2012). The investment
had been planned in 2009 ”when the quota was 1 million tons.” Once the realized quota
turned out to be much smaller than expected (370,000 tons), Nergard Sild closed down
the processing facility, leading to substantial losses.

Staying in the domain of fish farming, another major shock in our sample is for the
company Wilsgard Fiskeoppdrett. Wilsgard Fiskeoppdrett - a fish farming company
specializing in salmon - experienced an idiosyncratic shock of -1.23 in 2015. According to
national media, the reason for this drop was a massive outbreak of salmon lice (iLaks.no,
2015). The outbreak was so severe that the Norwegian Food Safety Authority threatened
the company with a daily fine until the situation got under control, worrying that the
outbreak would spread along the coast.

Subaru Norge AS - the lead importer of Subaru in Norway - had an idiosyncratic
shock of -1.21 in 2007 according to our estimates. The drop was generated by a tax hike
on gasoline-fueled cars, which changed the relative price on gasoline-fueled vs. diesel-
fueled cars. While the tax was levied on all gasoline-fueled cars, Subaru was the only
major brand without a viable diesel alternative (DN, 2007). As a consequence, the number
of new cars sold for Subaru dropped from 3800 to 344 cars by August the following year.

7The 1st percentile of the idiosyncratic shock distribution is -.905, while the 5th percentile is -.459.
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The horticulture company F.Dalene Gartneri AS had an idiosyncratic shock of -1.17
in 2008. According to local news media, the manager of the company was engaged in
substantial fraud, which culminated in arson on the main facility to recoup an insurance
premium of approximately 5 million USD (pd.no, 2011).

Fraud is the reason for another one of the most negative shocks in our sample. FIBO - an
aluminum producer - experienced an idiosyncratic shock of -1.25 in 2007 according to our
estimates, which ultimately lead to their subsequent bankruptcy in 2009. The bankruptcy
trustee had substantial criticism towards the board of the company, going far in pointing
to outright fraud and stating that the case was so severe that its ”report would and should
be sent to the Financial Supervisory Authority for further study” (jarlsbergavis.no, 2011).

Next, consider the case study of the furniture producer Ekornes, which in 2015 had
an estimated idiosyncratic shock of -1.24. The company blamed adverse conditions in the
German consumer market, one of their largest client bases. Looking for the causes, the
CEO of Ekornes pinpointed the uncertain economic environment and the conflict between
Russia and Western Europe. ”Germans are careful. They save in bad times. The conflict
between Western Europe and Russia has affected Germans more than in Norway” (e24.no,
2014).

Other notable shocks in our sample include the shipping company Volstad Shipping,
which in 2008 experienced an idiosyncratic shock of -1.28 due to misplaced foreign cur-
rency positions (smp.no, 2012), and the company Bergen Group Intech which in 2010
experienced an idiosyncratic shock of -1.33 due to under-performance of their invest-
ments in Iceland. Those assets were subsequently sold due to ”not being within the core
areas of the company” (Finansavisen, 2011).

Our estimated shocks also pick up less dramatic events. For instance, consider the firm
GC Rieber Oils, a firm specializing in producing Omega 3-based products. In 2013, they
recorded an ϵ j,t of -0.24. The incident which caused this, according to local newspapers,
was an accidental spill of between 500 and 800 litres of raw material from the company’s
factories into the local harbor (Naeringsliv, 2013). The spill was eventually managed and
dealt with thanks to the local municipality and fire services. The spill lead to ”substantial
economic losses” for the company, according to the CEO (Naeringsliv, 2013).
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Table D1: Loan Outcomes - Firm Balance Sheet Heterogeneity

(1) (2) (3) (4) (5) (6) (7)

Dependent Variable: Return on Loan)

Lagged Firm Characteristic: Leverage Assets Equity Debt Duration Bank Depend. Credit Rating Age

Shock x Low Characteristic 0.345 0.345 0.352 0.289 0.314 0.250 0.313
(0.020) (0.018) (0.020) (0.020) (0.022) (0.025) (0.020)

Shock x High Characteristic 0.450 0.976 0.410 0.753 0.497 0.483 0.576
(0.047) (0.170) (0.044) (0.046) (0.031) (0.026) (0.041)

All Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Additional controls ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 292825 292825 292825 292825 292825 292825 292825
R2 0.167 0.167 0.167 0.167 0.167 0.167 0.167

Notes: This table reports results from loan-level regressions of loan returns on idiosyncratic firm shocks interacted with various lagged
firm characteristics. Each characteristic is a dummy which takes the value of 1 for firms which are in the highest decile of leverage
(defined as equity over assets), share of bank credit to total credit, and share of short-term debt to total debt; firms in the lowest
deciles of total assets and total equity; firms with an below-A credit rating; and firms younger than 3 years. All specifications include
interacted bank x firm industry x year x loan-type x firm county fixed effects. Standard errors (in parentheses) are double clustered at
the firm-year level.

D Additional Empirical Results

D.1 Firm Balance Sheet Heterogeneity

We start by exploring heterogeneous effects of idiosyncratic firm shocks originating from
firms with different characteristics. Specifically, we augment specification (3) by interact-
ing our extracted shocks with lagged firm characteristics. We are interested in how the
transmission mechanism differs for firms with high leverage, low asset size, low equity,
short average debt duration, high bank credit reliance, low credit rating, and young age.
Each characteristic is thus a dummy which equals 1 for firms in that particular category
of interest and 0 otherwise.

Table D1 presents the results. Overall, there is rich firm heterogeneity behind our
loan-level outcomes. Relative to the baseline, the pass-through of idiosyncratic firm
shocks is stronger for firms with high leverage, short debt duration, high reliance on
bank debt, lower-than-“A” credit ratings, and firms younger than 3 years. All of these
firms, relative to the average firm, are more likely to be more “risky” from the bank’s
perspective. Interestingly, we find that interactions with firm size and debt duration
are statistically different from other characteristics. For micro-prudential purposes, these
results offer a new dimension for regulation of concentration risk: banks which are heavily
exposed to, for example, small, risky, young firms are at much greater risk of suffering
from detrimental idiosyncratic credit shocks than intermediaries that lend to liquid and
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Table D2: Loan Outcomes - Extensive Margin

(1) (2) (3) (4) (5)

Dependent Variable: Return on Loan

Baseline Firm Exit Firm Entry Firm Bankruptcy Ever Bankrupt

Firm Shock 0.361 0.387 0.322 0.365 0.360
(0.019) (0.019) (0.019) (0.018) (0.019)

Exit / Entry / Bankruptcy 0.613 -1.707 0.699 0.572
(0.075) (0.073) (0.161) (0.079)

Interaction -0.259 0.260 -0.133 0.014
(0.067) (0.059) (0.133) (0.068)

All Fixed Effects ✓ ✓ ✓ ✓ ✓
Observations 292825 292825 292825 292825 292825
R2 0.167 0.167 0.169 0.167 0.167

Notes: This table reports estimates from loan-level regressions of loan returns on firm shocks interacted with firm entry, exit, and
bankruptcy dummies. Firm entry (exit) dummies equal 1 for firms which entered (exited) the year before (following) the firm shock.
Firm bankruptcy is a dummy that equals 1 for firms which declare bankruptcy the year following the firm shock. Ever bankrupt
is a dummy that equals 1 for firms which have ever declared bankruptcy during the 2003-2015 period, and not necessarily directly
following the firm shock. All specifications include interacted bank x firm idustry x year x loan-type x firm county interacted fixed
effects. Standard errors (in parentheses) are double clustered at the firm-year level.

non-levered corporates.

D.2 Extensive Margin

Are our loan-level results driven by the intensive or the extensive margin? We are inter-
ested in seeing whether the transmission of idiosyncratic firm shocks is different among
firms that enter/exit the industry or go bankrupt. Our strategy is to construct a dummy
variable for each of the three groups of firms. For entrants, the dummy takes the value
of unity in the year following the entry, while for leavers and bankrupt firms the variable
equals unity in the year prior to the event. We also consider an “ever-bankrupt” dummy
which takes the value of unity for firms that filed for bankruptcy at any point during the
2003-2015 period. The latter variable captures potentially some unobserved intangible
characteristics such as poor management skills, which are common for unsuccessful firms
but cannot credibly be inferred from balance sheet information.

Table D2 reports the results. We see that the shock transmission mechanism is stronger
(weaker) among firms which have just entered (about to exit) the industry. We do not
find that the channel is stronger among firms which go bankrupt. Overall, the extensive
margin is active but does not dominate our results. In other words, even conditional
on firms being non-entrants, non-leavers, and not in bankruptcy, negative idiosyncratic
shocks can cause lower bank returns. That implies that our results are driven by both the
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Table D3: Loan Outcomes - Firm Ownership Heterogeneity

(1) (2) (3) (4) (5)

Dependent Variable: Return on Loan

All Firms Private Firms State Firms Community Firms Financial Vehicles

Firm Shock 0.335 0.336 0.478 0.089 1.145
(0.016) (0.019) (0.654) (0.120) (0.966)

Bank x Year x County FE ✓ ✓ ✓ ✓ ✓
Observations 330490 234074 162 2526 389
R2 0.051 0.053 0.243 0.282 0.214

Notes: This table reports estimates from loan-level regressions of loan returns on firm shocks originating from firms with different
ownership structure. Each column presents results from a specification in which only that particular ownership type is included.
Numbers of observations do not add up because many firms are not assigned ownership classifications. Standard errors (in parentheses)
are double clustered at the firm-year level.

Table D4: Loan Outcomes - Firm Industry Heterogeneity

(1) (2) (3) (3) (4) (5)

Dependent Variable: Return on Loan

All Firms Manufacturing Mining Construction Real Estate Agriculture

Firm Shock 0.335 0.356 0.401 0.414 0.064 0.215
(0.016) (0.050) (0.251) (0.040) (0.034) (0.055)

Bank x Year x County FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 330490 34232 1097 60169 8531 7773
R2 0.051 0.091 0.364 0.082 0.197 0.201

Notes: This table reports estimates from loan-level regressions of loan returns on firm shocks coming from firms from different sectors.
Each column presents results from a specification in which firms from only that particular sector are included. Mining includes
petroleum industries. Numbers of observations do not add up because many firms are not assigned industry classifications. Standard
errors (in parentheses) are double clustered at the firm-year level.

intensive and the extensive margin.

D.3 Firm Ownership and Industry Heterogeneity

Next, we investigate whether our results are driven by firms with a particular ownership
structure or industry classification. For example, is the shock transmission stronger among
special financial vehicles or construction firms? In Table D3 we report firm ownership
heterogeneity results, along with our baseline estimates. We see clearly that our results
reflect conventional privately owned firms and not state, community, or special financial
vehicles. Privately owned firms dominate our sample by a wide margin.

Table D4 explores heterogeneous effects by firm sector. Our baseline estimates are

18



Figure D1: Geographical Distribution of Granular Credit Risk

Notes: This picture is a colored map of 19 administrative counties (fylke) of Norway. Each shade of blue represents the county-specific
strength of the pass-through from idiosyncratic firm shocks to return on loans. These correspond to county-specific slope shifters
(slope dummies) introduced into the main loan regression 3. Shapefiles are from the Norwegian Mapping Authority (Kartverket).

almost identical to results from manufacturing firms. Overall, there doesn’t appear to be
any abnormality across different industries; the real estate sector is the only one where
pass-through appears to be significantly smaller.

D.4 Geographical Heterogeneity

Are our loan-level results driven by idiosyncratic shocks to firms located in particular
geographical regions of Norway? Figure D1 plots a coloured map of Norway, where each
of the 19 counties is colored with a different shade of blue. Darker regions represent a
higher local pass-through coefficient of idiosyncratic firm shocks onto loan-level returns.
Recall that our baseline average pass-through estimate at the loan level is 0.361. Based
on the map we document two main results. First, there is interesting cross-regional het-
erogeneity in the estimates that is potentially worth exploring in future research. Second,
this heterogeneity is not too drastic: county-wide averages are in the [0.19,0.44] range8.
Finally, we see that our result is not driven solely by Oslo and neighboring counties but is
in fact present throughout the country. We therefore conclude that our results are likely
not driven by some unusual regional clustering of correlated idiosyncratic shocks.

D.5 Loan-level Asymmetric Effects

In Section 3.4 we documented and discussed asymmetric effects of granular credit risk
at the bank level. We now ask whether similar asymmetric patterns are observed at

8The exception is the northernmost county, Finnmark, where we find a point estimate of -0.10. However,
this county is also by far the least populated area of Norway.
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Figure D2: Loan-Level Asymmetry

(a) Without Fixed Effects
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(b) With Fixed Effects
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Notes: This figure plots the binned scatter plots of the relationship between loan-level return on loans and idiosyncratic firm shocks.
Negative (positive) shocks are conditioned on being less (greater) than zero. Large enough negative (positive) shocks are conditioned
on being less than the last quartile (greater than the first quartile) of the distribution of negative (positive) shocks. Panel (b) includes
interacted bank x time fixed effects. The independent variable is standardized.

the loan level, i.e. within our loan-level specification 3. To this end, we condition firm
shocks ϵ j∈P(i,t),t to be strictly negative or positive. Since the distribution of firm shocks
is heavily centered around zero and the average shock is small in magnitude, we also
consider specifications where ϵ j∈P(i,t),t are sufficiently large in absolute terms, thus avoiding
the bunching of shocks around zero. Sufficiently large positive ϵ j∈P(i,t),t are defined as those
that are greater than the first quartile of the distribution of positive shocks; sufficiently
negative ϵ j∈P(i,t),t are those that are smaller than the last quartile of the distribution of
negative shocks.

Figure D2 reports binned scatter plots for the relationship between loan-level returns
on loans and ϵ j∈P(i,t),t. The plots are constructed in a similar fashion as described in detail
in Section 4.2. Panel (a) shows the raw specifications without any fixed effects while
panel (b) shows specifications with the inclusion of interacted bank x year fixed effects
that control for time-varying credit supply-side factors. Eye balling the plots is enough to
notice a non-linear relationship. When we condition on firm shocks being large enough
(dashed blue lines), the asymmetric and concave patterns are revealed in both panels.
In other words, we find the same concave relationship between firm disturbances and
loan-level outcomes as we did at the bank level. Important to this result is avoidance of
firm shocks that are too small and close to zero, i.e. those that are not severe enough to
trigger any material intensive- or extensive-margin response.
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D.6 Pricing and Compensation of Granular Credit Risk

Two questions that are key for understanding both positive and normative implications
of granular credit risk are (1) whether banks charge premia on loans that contribute to
portfolio concentration and (2) whether loans to non-granular borrowers are compensated
through lower rates for the fact that banks with concentrated portfolios potentially cut
lending once granular borrowers experience a negative performance shock. In this section,
we explore both these dimensions empirically. An important limitation of this analysis is
that in our Norwegian register we do not observe actual contract-based loan prices as in,
for example, the influential work of Jimenez et al. (2014). Given the nature of our data, it is
thus impossible to completely capture ex-ante or “equilibrium” compensation for granular
credit risk. What follows is an account of ex-post compensation through realized returns.
Ex-ante and ex-post returns, while potentially correlated, do not necessarily equalize.

Pricing We start by investigating whether granular credit risk is priced. This is poten-
tially challenging, empirically, as there is a large literature emphasizing the returns to
scale in bank lending (see e.g. Ivashina (2009)). To proceed, we assume that returns to
scale in lending are a function of the loan amount and not the loan share. In that case,
we can exploit the fact that, conditional on loan amounts, there’s sizable variation in loan
shares.

In columns (1) and (2) of Table D5 we report results from regressing loan-level returns
on loans (RoL) on the (log) size of the loan and the share of the loan in the bank’s overall
portfolio. First, note that the dependent variable is significantly negatively associated
with the size of the loan itself, an observation that is consistent with scale efficiencies
in intermediation. To the extent that contributions to granular credit risk are priced, we
would expect banks to earn a higher return on the loans that constitute a larger fraction
of the overall portfolio (conditional on the size of the loan). In general, we find precisely
that, even in a restricted specification (column (2)) that includes additional controls and
fixed effects.

Compensation We have shown in main text that non-granular borrowers experience a
contraction in loan supply and an elevation in interest flows following a negative granular
credit shock to their bank. Here, we explore whether these non-granular borrowers are
compensated for this risk. We operationalize the idea by regressing loan returns on the
bank-level corporate credit portfolio Herfindahl index (HHI). As before, we define non-
granular borrowers as firms with a loan share below the 50% and 20% percentiles: our
baseline thresholds. If the compensation channel is active, then we expect a negative
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and significant relationship: firms that borrow from banks with more concentrated credit
portfolios, on average and everything else equal, should pay less. We report the results
from these regressions in columns (3) - (6) of Table D5. In general, we find a negative
association which is also statistically significant (at the 1% level) in three out of four cases.

We have thus documented two results. First, granular credit risk appears to be priced
in ex-post terms: banks collect higher returns per loan from loans that constitute a higher
share in their portfolio. Second, non-granular borrowers pay less to banks with more
concentrated corporate loan portfolios. These findings are interesting for two reasons.
First, they are consistent with what we previously documented with respect to bank
heterogeneity analysis and risk-taking in Section 5.3. Specifically, the seemingly positive
complementarity between exposure to granular credit risk, risk taking, and profitability.
Second, the normative implications or our results are not obvious (on top of the many
reasons outlined before due to optimal loan selection when there are frictions). On one
hand, there is significant pass-through from granular firm shocks to bank portfolios and
then to non-granular borrowers. On the other hand, we find some evidence that this
source of risk is compensated for ex post. The net “welfare” effect of granular credit risk
is therefore ambiguous. Again, because we can not speak of ex-ante compensation due
to the nature of our data, the findings in this section should be corroborated in future
research.

D.7 Impact of Aggregate Shocks

In this paper our primary focus is on the effect of idiosyncratic firm shocks on banks
and the broader economy. But how do idiosyncratic shocks compare to aggregate risk?
Section 4.3 demonstrates that idiosyncratic borrower-level risk is not insured in practice,
but the margin of adjustment when it comes to hedging aggregate risk is surely even
harder. We re-estimate our baseline bank-level regression with two proxies of aggregate
risk on the right-hand side: Norway’s real GDP and the price of Brent oil. We look at oil
prices because exports of crude oil and natural gas accounted for 17% of the country’s
GDP in 2015.

Results are reported in Table D6. Column (1) restates the baseline estimates from
Table 3, Column (6). In columns (2)-(3) the main regressors are now (standardized) real
GDP and oil prices, respectively. Point estimates for GDP and oil prices are greater by
factors of 3 and 5, respectively, and are statistically significant but nevertheless remain
within the same order of magnitude as the estimate in Column (1). Of course, neither of
the two aggregate variables are truly “shocks” and these regression estimates are likely
biased upwards. Therefore, the relative effect of idiosyncratic borrower risk compared to
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Table D5: Pricing and Compensation of Granular Credit Risk

(1) (2) (3) (4) (5) (6)

Dependent Variable: Return on Loan

Pricing of GCR Compensation for GCR

Log (Loan Size) -3.361 -4.916 -4.309 -6.374 -4.821 -9.357
(0.031) (0.072) (0.053) (0.119) (0.103) (0.246)

Loan Share, % of bank portfolio 0.170 0.310
(0.012) (0.033)

Bank-level HHI -0.404 -0.631 -2.234 -0.686
(0.099) (0.218) (0.241) (0.569)

Non-Granular firms (50%) n.a. n.a. ✓ ✓ - -
Non-Granular firms (20%) n.a. n.a. - - ✓ ✓
Controls - ✓ - ✓ - ✓
All Fixed Effects - ✓ - ✓ - ✓
R2 0.139 0.498 0.138 0.544 0.103 0.600
Observations 333289 283217 166642 139286 66652 52370

Notes: This table reports the results from regressing loan-level return on loans onto (log) size of the loan, the loan share (in %) of the
loan and the bank-level credit portfolio Herfindahl (HHI). All fixed effects include bank, industry, year, and firm levels. Controls
include firm-level log(sales), capital, the wage bill, leverage, liquidity, credit rating, and a quadratic polynomial in age. Standard
errors, in parantheses, are double-clustered at the firm and year levels. Independent variables have been standardized.

aggregate risk is most likely larger than what we can capture with this simple exercise.

D.8 Supplementary Figures and Tables

In this section we present final supplementary figures and tables that complement our
main results and text. Figure D3 plots the relationship between the granular instrument
GIVi,t and the weighted firm shock ϵ̄i,t: the test of the first stage. Figure D4 demonstrates
the probability of within-region banking over time in Norway. The figure, sourced from
Juelsrud and Wold (2020), represents a measure of regional home bias in lending. Finally,
Table D7 reports results from bank-level regressions of loan writedowns and the Sharpe
ratio on size-weighted firms shocks - either instrumented by the granular IV or not.
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Table D6: Impact of Aggregate Shocks

(1) (2) (3)

Granular Credit Shock 0.117
(0.030)

Log (GDP) 0.348
(0.075)

Log (Oil Price) 0.522
(0.029)

Bank FE ✓ ✓ ✓
Year FE ✓ - -
Bank Controls ✓ ✓ ✓
R2 0.627 0.152 0.242
Observations 1211 1211 1211

Notes: this table presents results from bank-level regressions of bank-level returns on corporate loans on idiosyncratic and aggregate
shocks. In column (1) the main regressor is the baseline GIV-instrumented idiosyncratic firm shock measure. In columns (2)-(3) the
main regressors are the standardized logs of Norwegian real GDP and Brent oil prices, respectively. All specifications include the
usual set of bank controls. Standard errors (in parentheses) are clustered at the bank level.

Figure D3: First Stage - Firm Shocks and the Granular IV
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Notes: This figure plots the relationship between the endogenous covariate ϵ̄i,t and the instrument, GIVi,t. On the vertical axis we have
the idiosyncratic firm shock which is loan size-weighted and aggregated to the level of a bank. Idiosyncratic firm shocks are extracted
from specification 2. The granular instrument (horizontal axis) is constructed based on equation (7). Correlation between the two
variables is 0.863.
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Figure D4: Home Bias in Within-Region Banking

Notes: This figure shows the extent to which there is home bias in the Norwegian corporate credit market. Source: Juelsrud and
Wold (2020). Specifically, red bars show the observed fraction of loans within a given year in our sample where the firm and the bank
are located in the same county (within-region loans). The blue bars show the counterfactual share of within-region loans, where we
assume random matching between firms and banks. Given random matching, the probability that a firm i borrows from a bank j
operating in that region is the sum of the aggregate/national market share of bank j.

Table D7: Bank Loan Portfolio Writedowns and Sharpe Ratio

(1) (2) (3) (4)

Writedowns Sharpe Ratio

Granular Credit Shock -0.016 -0.015 0.057 0.052
(0.009) (0.011) (0.069) (0.037)

Bank FE ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓

Bank Controls ✓ ✓ ✓ ✓

Instrumented by GIV - ✓ - ✓

Observations 1184 1184 1206 1206
R2 0.937 0.071 0.654 0.025

Notes: This table reports results from regressing bank-level (log) loan writedowns and the Sharpe ratio on portfolio-level aggregated
firm shocks ϵ̄i,t. Columns (1) and (3) are standard OLS, while in columns (2) and (4) firm shocks are instrumented with the granular
IV. Bank controls include lagged bank total assets, leverage, liquidity, number of loans, deposit to assets ratio and financial assets to
assets ratio. Standard errors (in parentheses) are clustered at the bank level.
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Table E8: Robustness to the Great Financial Crisis

(1) (2) (3) (4) (5) (6)

Loan-Level Bank-Level

Firm Shock 0.361 0.432 0.322 0.117 0.091 0.108
(0.019) (0.032) (0.022) (0.030) (0.051) (0.037)

All Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓
Bank Controls ✓ ✓ ✓
Observations 292825 102879 189946 1211 472 737
R2 0.167 0.158 0.172 0.101 0.066 0.127

Notes: This table reports timing robustness for baseline loan- and bank-level regressions from Tables 2 and 3, respectively. Columns
(1)-(3) report results of loan and columns (4)-(6) of bank outcomes, respectively. Columns (1) and (4) are baseline estimates. Columns
(2) and (5) include only the pre-2009 period. Columns (3) and (6) include only the post-2009 period.

E Robustness Tests

In this section, we provide several additional robustness checks. First, we test robustness
with respect to the Great Financial Crisis (GFC). Second, we check that idiosyncratic firm
shocks have a pairwise correlation of approximately zero. Third, we conduct several
placebo tests at various levels of aggregation to lend further support to our baseline
results. Finally, in order to check if our idiosyncratic shock measure is serially correlated,
we estimate a linear panel fixed effects model with AR(1) disturbances at all levels of
aggregation.

E.1 Robustness to the Great Financial Crisis

In order to investigate whether the relationship between granular credit risk and loan or
bank outcomes is robust to the Great Financial Crisis, we re-do our estimation focusing on
years either before or after the GFC. Table E8 reports the results. We highlight three main
observations. First, our results do not vanish for either of the two sub-periods. Second,
this is true for both loan-level and bank-level estimations. Third, estimates are slightly
noisier for the pre-GFC period, although still statistically significant.
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Figure E5: Pairwise Cross-Sectional Correlation of Firm Shocks (Balanced Panel)

Panel A: Histogram
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Panel B: Summary Statistics

Number of Pairs Mean Abs. Mean Skewness Std. Dev. Min Max
Firm Shock 1,861,485 0.019 0.282 -0.002 0.342 -0.977 0.985
Simul. Firm Shock 1,861,485 0.000 0.235 -0.001 0.289 -0.961 0.943

Notes: These figures report all pairwise cross-sectional correlation coefficients for idiosyncratic firm shocks. The sample includes a
balanced panel of firms over 2003-2015. Panel A presents the histogram and Panel B reports summary statistics. Abs. Mean refers to
the average of the absolute value of the correlation coefficients. Firm shocks are extracted based on specification 2. For the simulated
data the estimated firm shocks are replaced by draws from a standard normal distribution.

E.2 Pairwise Correlations Tests

An important question that must be addressed is potential pair-wise correlation of our
idiosyncratic firm shocks. Systematic residual correlation across firms may indicate that
our shocks are still driven by common factors, which would invalidate our conjecture that
fluctuations are truly idiosyncratic. For example, we could be capturing some unobserved
network effects such as the ones induced by firm trade credit relationships. To test this,
we compute pairwise correlation coefficients across any two pairs of firms in our sample.
Figures E5 and E6 present histograms and summary statistics of all pairwise correlations
of firm shocks. We report results for a balanced panel sub-sample of firms over the time
period 2003-2015 (Figure E5), as well as all firms pairs in our sample with at least 3
overlapping observations (Figure E6).

The average pairwise correlation in the balanced sub-sample is 0.019, with the standard
deviation of 0.34, while in the full sample the average is 0.005 with the standard deviation
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Figure E6: Pairwise Cross-Sectional Correlation of Firm Shocks (Full Sample)

Panel A: Histogram
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Panel B: Summary Statistics

Number of Pairs Mean Abs. Mean Skewness Std. Dev. Min Max
Firm Shock 477,819,876 0.005 0.519 -0.005 0.601 -1.000 1.000
Simul. Firm Shock 477,819,876 0.000 0.502 0.000 0.588 -1.000 1.000

Notes: These figures report all pairwise cross-sectional correlation coefficients for idiosyncratic firm shocks. The sample includes firm
pairs with at least three overlapping years over 2003-2015. Panel A presents the histogram, and Panel B reports summary statistics.
Abs. Mean refers to the average of the absolute value of the correlation coefficients. Firm shocks are extracted based on specification 2.
For the simulated data the estimated firm shocks are replaced by draws from a standard normal distribution.

of 0.60. In both samples, the skewness coefficient is essentially zero (-0.0016 in the balanced
panel, -0.005 in the full sample). Hence, the distribution of the pairwise correlation
coefficients is centered at zero and highly symmetric. In contrast, if there were important
common factors driving our idiosyncratic shocks, the distribution would display non-zero
skewness and a non-zero mean. The relatively large standard deviation is likely stemming
from the short time dimension in our data.9 In the balanced sub-sample, each pairwise
correlation coefficient is based on 13 data points, which effectively induces spurious co-
movements. To illustrate this, we also report correlations when we replace our estimated
firm shocks with firm shocks drawn from a standard normal distribution. Even when
shocks are iid by construction, the standard deviation is high at 0.29 in the balanced
sub-sample of firms and 0.58 in the full sample.

The pairwise correlations are centered at zero, highly symmetric, and display remark-

9With only two overlapping observations, the correlation coefficient is by definition either 1 or -1.
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Table E9: Placebo Regressions - Permutation Tests

Simulations True Coefficient Event Frequency Event P-value

Loan Outcomes
Permuted Firm Shock 1000 0.361 0 0.000

Bank Outcomes
Permuted Firm Shook, Pooled 1000 0.116 0 0.000
Permuted Firm Shock, Positive Only 1000 0.016 838 0.838
Permuted Firm Shock, Negative Only 1000 0.194 0 0.000

Notes: This table reports results from Monte Carlo permutation regressions where loan or bank return on loans are regressed on firm
shocks that are randomly permuted. The last two rows report results when permuted shocks are positive or negative only, respectively.
Columns report the number of simulations, the true coefficients based on Table 2 column (3) and Table 3 columns (3)-(5), the number of
events where permutations produced estimates that are as large as the true estimate (in absolute value) by chance, and the associated
p-values.

ably similar patters to shocks drawn from a standard normal distribution. While this
finding is not a proof, it does provide very reassuring evidence in support of our idiosyn-
cratic firm shocks being truly idiosyncratic and not being driven by unobserved factors
that induce cross-sectional correlation, such as production networks.10

E.3 Placebo Regressions

To ensure that we do not falsely reject the null hypothesis due to potentially serially
correlated error terms, we run two sets of placebo tests. First, we follow Chetty et al.
(2009) and implement a nonparametric permutation test for whether the true effect of
idiosyncratic firm shocks on loan returns is zero. In order to do so, we randomly reassign
the estimated firm-level shocks and redo the analysis at the loan and bank levels. Placebo
Monte-Carlo permutations results are reported in Table E9. We find that we can reject the
null hypothesis of no association (at the 1% level) under this non-parametric distribution.
In words, it’s highly unlikely that our results are due to random chance. Furthermore,
at the level of the bank, we confirm that our finding of strong asymmetric effects is not
coincidental since the permuted positive-only shock estimate has a p-value of 0.84, while
the negative-only shock estimate has a p-value of 0.000.

In addition to the above, in order to illustrate how our idiosyncratic shocks pick up
economically meaningful information, we run a series of placebo regressions where firm
shocks are randomly drawn from a uniform distribution instead of being extracted from
the economic specification 2. The results from using these drawn shocks for the loan-

10Additional reassurance comes from our analysis of networks in 5.2 and our robustness checks in Section
A.1 and A.2 of the Online Appendix where we show that our results are robust to a procedure cleaning our
shock measure from potential common factors.
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Table E10: Placebo Regressions - Random Shocks

Number of Draws Mean Std. Dev. Min Max

Loan Outcomes
Placebo Firm Shock 1000 0.001 0.007 -0.018 0.021

Bank Outcomes
Placebo Firm Shook, Pooled 1000 0.000 0.005 -0.016 0.018
Placebo Firm Shock, Positive Only 1000 0.001 0.018 -0.053 0.049
Placebo Firm Shock, Negative Only 1000 -0.000 0.014 -0.041 0.046

Notes: This table reports results from a placebo exercise where loan or bank outcomes are regressed on sequences of randomly
generated numbers. In each row, placebo shocks are randomly drawn from the interval of the true shock. The last two rows report
results when shocks are positive or negative only, respectively. Columns report the number of random draws and summary statistics
of the regression coefficients: mean, standard deviation, minimum, and maximum.

and bank-level analyses are reported in Table E10. Across all specifications and levels of
aggregation we find no association between these randomly generated shocks and loan
or bank outcomes.

Second, as highlighted in Adao et al. (2019), similar exposures to the same idiosyncratic
shocks can yield under-estimated standard errors at the aggregate level and hence an over-
rejection of the null hypothesis. We therefore run a re-sampling exercise that is suggested
in Adao et al. (2019). Specifically, we construct 1,000 samples where we - in each sample
- simulate i.i.d firm shocks from a normal distribution with the same mean and standard
deviation as the empirical shock distribution. We then re-do the exercise by aggregating
these generated firm shocks to the bank level, constructing the GIV, and running our
baseline bank-level regressions. For each sample, we keep the coefficient estimate and the
estimated standard error. We compare the dispersion of the distribution of the coefficient
estimates with the median estimated standard error and compute the rejection rate across
all samples. If the standard errors in our setting are correct, we would expect to reject
the null hypothesis in 5 % of the cases. Results are shown in Table E11. As is clear
from the table, this placebo exercise yields, on average, estimates that are close to zero.
Importantly, we reject the null hypothesis in close to 5% of the cases at a significance level
of 5%, suggesting that it is unlikely that we under-estimate standard errors in the baseline
analysis.
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Table E11: Standard Errors and Rejection Rates of H0 : β = 0 at the 5% Significance Level

Estimate Median std. error Rejection rate
Mean Std.dev

(1) (2) (3) (4)

-0.002 0.032 0.031 6.8%

Notes: This table indicates the mean and standard deviation of the estimation of our baseline bank-level regression across 1000 placebo
samples (columns 1 and 2), the median standard error (column 3) and the percentage of placebo samples for which we reject the null
hypothesis H0 : β = 0 at 5% significance level. Results are based on 1’000 placebo samples.

E.4 Fitting a Fixed Effects Model with AR(1) Disturbance

We now run our firm shocks through an autoregressive linear model of order 1 in order to
establish whether they are autocorrelated or not. We also want to facilitate future structural
analysis of models with a financial sector that is subject to “idiosyncratic granular borrower
risk”. Specifically, we fit the full cross section of firm shocks into a linear fixed effects model
with an AR(1) disturbance term. Results are reported in Table E12. Parameters of the
process - the autoregressive coefficient and the standard deviation of the error term -
are reported for all levels of aggregation. Overall, we find that the idiosyncratic firm
shock is volatile (standard deviation of roughly 0.2) and not persistent at all (auregressive
coefficient of roughly 0.12-0.32). A volatile i.i.d. process is likely to approximate granular
credit risk rather well.

Table E12: Estimating Fixed Effect Linear Models with AR(1) Disturbances

Borrower Level Bank Level Firm Industry Level County Level
Autoregressive Coef. 0.318 0.122 0.241 0.223
Standard Deviation 0.267 0.107 0.254 0.251

Notes: This table reports parameter estimates of a linear unbalanced panel fixed effects model with a disturbance that follows an
autoregressive process of order 1. Estimates for the autoregressive coefficient and the standard deviation of the error term are
reported. Columns report results for various levels of aggregation. Idiosyncratic firm shocks are extracted based on specification 2
and then aggregated to different levels with loan shares as weights.
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F Large Loan Dynamics

In this Appendix, we construct a granular loan residual for the portfolio of every bank
in every year. This approach supplements our baseline implementation of the granular
instrument in the main text. Specifically, we use the weighted shock to the top 1 % of
clients (according to the loan share) of every portfolio as the key independent variable,
while controlling for the average (unweighted) shock to the bottom 99 %. All of our main
results - including the direct effects on bank outcomes and the indirect, second-round
spillover effects on the economy - remain unchanged. The fact that main results are
robust to this alternative approach illustrates the importance of the very largest clients
for the outcomes considered, another way of illustrating the relevance of the granular
hypothesis in our setting. Moreover, it reinforces the conclusion that the the results in
the main text are not driven by unobserved, common bank factors. In fact, we find
qualitatively and quantitatively similar results as in the main text for bank returns (Table
F13), credit spillovers (Tables F14 and F15), capital growth (Table F16) and firm defaults
(Table F17). Importantly, we control for the average shock of all other firms in every
bank’s portfolio.

Table F13: Bank returns

(1) (2) (3) (4) (5) (6)
Dependent Variable: Bank Return on Loans (RoA)

Pooled Positive Negative Pooled Positive Negative

Alternative bank shock (std.) 0.059 -0.027 0.110 0.060 -0.037 0.125
(0.026) (0.051) (0.062) (0.026) (0.054) (0.061)

Bank FE ✓ ✓ ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓ ✓ ✓ ✓

Controls ✓ ✓ ✓

Observations 1206 552 647 1206 552 647
R2 0.747 0.815 0.728 0.764 0.831 0.749

Notes: This table reports results from regressing bank-level return on loans on the year-on-year change in the weighted average of the
firm performance shock to the top 1 % loan clients according to loan share. We include the unweighted shock to the bottom 99 % as
a control variable in all specifications. Column (3) - (6) shows the results when we additionally include bank controls. Columns (1)
and (4) consider all shocks, (2) and (5) consider the subsample where the alternative bank shock is positive and columns (3) and (6)
considers the subsample where the alternative shock is negative. Positive (negative) shock specifications include only observations
in which the shock measure ϵ̄i,t is above (below) zero. Bank controls include lagged total assets, leverage, liquidity, number of loans,
deposit to assets ratio and financial assets to assets ratio.
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Table F14: Spillovers: credit growth

(1) (2) (3) (4) (5)
∆ loans (std.)

∆ Alternative bank shock (std.) -0.00327 0.0454 0.0254 0.305 0.330
(0.0126) (0.0472) (0.0465) (0.176) (0.214)

Non-Granular Firms (50%) - ✓ ✓ - -
Non-Granular Firms (20%) - - - ✓ ✓

Year x Industry x County x Firm FE ✓ ✓ ✓ ✓ ✓

Bank FE - - ✓ - ✓

Instrumented by GIV ✓ ✓ ✓ ✓ ✓

Observations 15279 3479 3443 232 212

Notes: This table reports results from regressing year-on-year changes in (log) loan volumes on the year-on-year change in the weighted
average of the firm performance shock to the top 1 % loan clients according to loan share. We include the unweighted shock to the
bottom 99 % as a control variable in all specifications. Specifications are based on equation (12). Both dependent and independent
variables have been standardized. Column (1) includes all firms. Columns (2)-(5) include only non-granular firms. Non-granular
firms are defined as firms whose bank loan shares are less than the 50th (columns (2)-(3)) or the 20th (columns (4)-(5)) percentiles of
the loan share distribution, which is pooled over all banks and years. The full distribution of loan shares was plotted on Figure 1.
Standard errors (in parentheses) are double clustered at the bank and firm level.
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Table F15: Interest flows

(1) (2) (3) (4) (5)
∆ interest flows (std.)

∆ Alternative bank shock (std.) -0.0158 -0.109 -0.134 -0.153 -0.139
(0.0137) (0.0457) (0.0522) (0.190) (0.185)

Non-Granular Firms (50%) - ✓ ✓ - -
Non-Granular Firms (20%) - - - ✓ ✓

Year x Industry x County x Firm FE ✓ ✓ ✓ ✓ ✓

Bank FE - - ✓ - ✓

Instrumented by GIV ✓ ✓ ✓ ✓ ✓

Observations 15279 3479 3443 232 212

Notes: This table reports results from regressing year-on-year changes in (log) interest flows on the year-on-year change in the weighted
average of the firm performance shock to the top 1 % loan clients according to loan share. We include the unweighted shock to the
bottom 99 % as a control variable in all specifications. Specifications are based on equation (12). Both dependent and independent
variables have been standardized. Column (1) includes all firms. Columns (2)-(5) include only non-granular firms. Non-granular
firms are defined as firms whose bank loan shares are less than the 50th (columns (2)-(3)) or the 20th (columns (4)-(5)) percentiles of
the loan share distribution, which is pooled over all banks and years. The full distribution of loan shares was plotted on Figure 1.
Standard errors (in parentheses) are double clustered at the bank and firm level.
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Table F17: Defaults

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: Prob. of Bankruptcyt Pr.(Ever Bankrupt)
∆ BankShockt−1 -0.001 -0.002 -0.043 -0.051 -0.078 -0.097 -0.039 -0.092

(0.011) (0.012) (0.028) (0.027) (0.050) (0.053) (0.015) (0.028)
Non-Granular Firms (50%) - - ✓ ✓ - - ✓ -
Non-Granular Firms (20%) - - - - ✓ ✓ - ✓
Firm Controls - ✓ - ✓ - ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pseudo R2 0.039 0.096 0.039 0.100 0.037 0.089 0.039 0.034
Observations 164710 164710 78468 78468 27827 27827 79922 28753

Notes: This table reports results from firm-level regressions where the outcome variable is a dummy variable for firm default. The
key independent variable is the year-on-year change the weighted average of the firm performance shock to the top 1 % loan clients
according to loan share. We include the unweighted shock to the bottom 99 % as a control variable in all specifications. Specifications
are based on Equation (13). Non-granular firms are defined as firms whose bank loan shares are less than the 50th or 20th percentile
of the loan share distribution. For firms with multiple banking relationships, we define a firm as non-granular if the mode credit
relationship is non-granular. Standard errors (in parentheses) are clustered at the firm level.

Table F16: Capital growth

(1) (2) (3) (4) (5)
∆ Capital (std.)

∆ Alternative bank shock (std.) 0.001 0.020 0.024 0.059 -0.025
(0.003) (0.013) (0.016) (0.034) (0.060)

Non-Granular Firms (50%) - ✓ ✓ - -
Non-Granular Firms (20%) - - - ✓ ✓

Industry x County x Year FE ✓ ✓ ✓ ✓ ✓

Firm FE - - ✓ - ✓

Instrumented by GIV ✓ ✓ ✓ ✓ ✓

Observations 157642 66648 55770 19608 13719

Notes: This table reports results from firm-level regressions where the outcome variable is year-on-year change in the (log) fixed capital
stock. The key independent variable is the year-on-year change the weighted average of the firm performance shock to the top 1 %
loan clients according to loan share. We include the unweighted shock to the bottom 99 % as a control variable in all specifications.
Specifications are based on Equation (13). Non-granular firms are defined as firms whose bank loan shares are less than the 50th or
20th percentile of the loan share distribution. For firms with multiple banking relationships, we define a firm as non-granular if the
mode credit relationship is non-granular. Standard errors (in parentheses) are clustered at the firm level.
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G Theoretical Motivation

Throughout the paper, we have exploited the stylized fact that the distribution of bank
credit exhibits a fat tail. In this section, we provide one simple possible theoretical
rationalization for this observation.11 In the data, the right tail of the loan distribution is
populated by a small number of very large loan contracts (as a share of the bank portfolio).
These large loan contracts are almost always underwritten to big firms, a fact which we
verify from our dataset. It is well known that the size distribution of firms is fat-tailed.
If firm credit is a function of firm size, then we can precisely derive how the granularity
of the firm distribution translates into the granularity of credit and affects portfolio-level
outcomes.

A theoretical challenge encountered when formalizing this intuition is the fact that
both firm loan and firm size distributions could potentially have infinite variances. In this
particular case, standard central limit theorems break down. Following Gabaix (2011), we
therefore resort to Lévy’s generalized central limit theorems that can accommodate dis-
tributions with fat tails. In this section, we provide sufficient conditions for distributional
parameter values to ensure that - assuming the firm size distribution has a fat tail - the
firm credit distribution also has a fat tail.

G.1 Model

Suppose there are N firms in the economy12. Before production can begin, firms must
obtain funding. By assumption, each firm i is cash-strapped and has to start the period
by borrowing Lit from a bank. The growth rate of firm debt demand evolves according to:

∆Li,t+1

Lit
= σiϵi,t+1 (G1)

where σi is the volatility of firm-level debt growth and ϵi,t+1 are i.i.d. random variables.
Economy-wide total stock of firm debt is:

Dt =

N∑
i

Lit (G2)

11As noted in section 5.4, other frictions would have to be added to fully account for the data.
12Alternatively, suppose there are N borrowers in a given bank’s portfolio and we treat the bank as the

“economy”.
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and growth of financial debt in the economy is

∆Dt+1

Dt
=

N∑
i

σi
Lit

Dt
ϵi,t+1 (G3)

The variance of growth of total debt is the weighted sum of the variance of the volatility
of idiosyncratic shocks to debt demand, with the shares equaling the squared share of
firm i’s borrowing in the total economy. Assuming σi= σ∀ i, we have:

σD =
[ N∑

i

σ
(Lit

Dt

)2] 1
2

(G4)

It is clear from equation G4 that the variance of total debt depends on the distribution
of firm-level debt demand Lit. In our data, we see that firm-level borrowing is strongly
positively correlated with firm size. Let firm size, proxied by either total assets or sales,
be yit. Assume idiosyncratic volatility of firm growth σy is constant and common to all
firms. Following Gabaix (2011), we assume that y1, . . . , yN are drawn from a power law
distribution:

P(y > x) = (1 + x)−α (G5)

with the exponent α ≥ 1. Note that we set the location and scale parameters to zero and
unity, for simplicity. In the literature, this precise specification of a power law corresponds
to a Pareto distribution of Type II.

Now, we assume a specific functional form for the amount of borrowing Lit as a function
of size yit:

Lit = yλi
it (G6)

where λi > 0∀i. We proceed with the assumption that λi = λ is homogenous across all
firms.

Drawing from the literature on statistics, economics, and actuarial sciences, we know
that once yi follows a power law, then yλi follows a Champernowne (1952) distribution, also
known as the Burr Type XII, with parameters {τ, α} where τ = 1/λ (Rodriguez, 1976). In
economics, this distribution is commonly referred to as the Singh-Maddala (SM) density
(Singh and Maddala, 1976). It has been used widely to model household income and
wealth inequality. Formally:

P(L > x) ∼ (1 + xτ)−α (G7)

with τ > 0. For the special case of τ = 1, firm debt becomes linear in size, the
distribution collapses to a Pareto Type II, and we are back to Gabaix (2011). In general,
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the rate of decay of σD, as the sample size grows, will depend on the value of structural
parameters. For the special case of 1 < τα < 2, the SM random variable has an infinite
variance and standard limit theorems break down. There is therefore a direct link between
the fat tail of the firm distribution and of the credit distribution. This result is summarized
in our main proposition below:

Proposition 1. Let firm sizes yi . . . yN be drawn from a power law distribution with exponent
α ≥ 1. Suppose each firm has non-rationed access to the credit market, through which on demand
it borrows a fraction yλ−1 of its size, with λ¿0. Firm-level borrowing is thus L = yλ, which grows
with a constant idiosyncratic volatility σ. L follows the Singh-Maddala distribution with power
and shape parameters {α, τ}:

P(L > x) ∼ (1 + xτ)−α

with τ = 1/λ. Then, as N→∞:

• For 1 ¡ ατ ¡2, by the Lévy’s central limit theorem, the volatility of aggregate debt D is given
by σD ∼ σ 1

N1−1/(ατ)

√
η, where η is a Lévy random variable with exponent ατ2

• For ατ ≥ 2, by the Lindeberg-Lévy classical central limit theorem, the volatility of aggregate
debt D is given by σD ∼ σ 1

N1/2

√
η, where η is a constant

Proof: Section G.3 of the Online Appendix.
Our notation means that σD ∼ σ 1

N1−1/(ατ)

√
η implies convergence in distribution of

σDN1−1/(ατ) to σ
√
η, where η is a stable Lévy random variable. What we have shown

is that the distribution of firm debt could have either thin or fat tails. If ατ ≥ 2, σD decays
according to 1

√
N

. However, if 1 < ατ < 2, then σD decays at the rate of 1
N1− 1

ατ
, i.e. more

slowly. In this case, idiosyncratic shocks to borrowers could drive the total debt portfolio
and, as in our main empirical experiments, affect aggregate outcomes.

G.2 Parameter Estimation

In this section, we test whether the parameter restriction 1 < ατ < 2 can be supported by
our data. First, we fit the Generalized Pareto density into the size distribution of firms.
Most studies in the literature treat sales as the size proxy. We, apart from sales, also
consider total equity and total assets as alternative size proxies that could be relevant for
deciding on how much bank credit to request. This step grants us three estimates of α.
Second, we back out firm-specific λi directly from equation (G6) and then take the median
of the resulting distribution. We conduct this step for all three definitions of size as well.
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Table G1: Theoretical Model Parameter Estimates

Firm Size Parameters Loan Distribution Variance

α λ ατ

Sales 1.26 1.005 1.388 Infinite
(0.002) (0.548) (0.413)

Assets 1.321 0.923 1.587 Infinite
(0.001) (0.361) (0.887)

Equity 1.495 1.086 1.641 Infinite
(0.002) (0.467) (1.144)

Notes: This table reports estimates of key parameters of the model described in Section G. α, λ and ατ
represent the Pareto power parameter of the firm size distribution, the firm’s debt demand elasticity, and
the sufficient statistic of the Singh-Maddala distribution, respectively. Standard errors (standard deviations
for λ and ατ) are in parentheses.

As a result, we have three estimates for ατ - the sufficient statistic that determines the
speed of decay of σD.

Table G1 in the Online Appendix reports the results from maximum likelihood esti-
mation of α and other parameters. Our estimates confirm that the 1 < ατ < 2 restriction
is supported in the data. We find that α is in the [1.26, 1.49] range and ατ is between 1.38
and 1.64, i.e. firmly within the (1,2) bounds. Our estimation results suggest that both the
firm size and the firm loan distributions can be reasonably approximated with fat-tailed
densities. The aggregate credit distribution can be affected by firm-level disturbances:
credit risk is granular.

39



G.3 Proof of Proposition 1

The strategy of the proof follows closely Appendix 1 and Proposition 2 in Gabaix (2011).
First, we show that L, which follows the Singh-Maddala distribution, satisfies Assump-
tions 1-2 below:

Assumption 1: liml→∞P(L1 > x)/P(|L1| > x) = κ ∈ [0, 1]

Assumption 2: P(|L1| > x) = x−αB(x) with B(x) a slow-moving function.

Assumption 1 is verified trivially because SM is defined on the non-negative real line.
Assumption 2 holds once we re-write: P(|L1| > x) = x−α( x

1+xτ )
α. So, B(x) = ( x

1+xτ )
α. For

τ = 1, the function is clearly slow-moving. Generally, for τ > 0 we must show that:

lim
x→∞

B(tx)/B(x) =
lim B(tx)
lim B(x)

= 1 (G8)

for any t¿0 and for as long as the denominator is , 0. limx→∞ B(x) = limx→∞

[
x

1+xτ

]α
=

limx→∞

[
1

1/x+xτ−1

]α
= 1. Similarly for B(tx).

Next, we construct three sequences (an, bn, sn) that constitute the infinite sum across

firms. an = inf (x : P(|L1| > x) ≤ 1/N) ∼
(
N1/α

− 1
)1/τ
≈ N

1
ατ . bn = nE

(
L11|L|≤an

)
= 0. And

sn =
∑N

i Li. Thus:

lim
N−→∞

(
N

1
ατ

)−1
N∑
i

Li
d
−→ η ∼ Lévy(ατ) (G9)

In the remainder of the proof, we apply equation (G9) to the case of constant σ, i.e. when
firm-liability volatility is constant over time and not correlated cross-sectionally. When
ατ > 2, standard Lindeberg-Lévy applies. When 1 < ατ < 2, the loan portfolio Herfindahl
decays according to:

N1− 1
ατ

(
N
−2
ατ

∑N
i L2

i

)1/2

N−1
∑N

i Li

d
−→

Lévy1/2

E(L)
(G10)

When 1 < ατ < 2, the denominator (mean of Singh-Maddala) is finite. Since firm-level
volatilities are constant, and Lévy is a stable random variable, the volatility of loan growth
will be therefore decaying at the rate proportional to N1− 1

ατ :

σD ∼
1

N1−1/(ατ)
Lévy1/2σ (G11)
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Forτ = 1 we are in the special case of Singh-Maddala collapsing to the Pareto II distribution
and standard results in Gabaix (2011) are obtained up to the slow-moving function B(.).
For τ , 1 but τ > 0, the sufficient statistic for the comparison of rates of convergence
across finite and infinite variance cases is ατ. ■
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