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Let’s start with some data...

Change in Ice-Age atmospheric CO2 
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Thousand-year changes in parts per million (ppm) CO2 in
atmosphere varying over ±25ppm: 1 ppm = 7800 billion kg of CO2
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And now!
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Now: atmospheric CO2 changes of 130ppm in under 250 years.
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Now: atmospheric CO2 changes of 130ppm in under 250 years.
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Was Climate Change inevitable?

Forecasting the jump in CO2 from 1760 to now would have
required a forecast of economies continuing to be dependent on
coal then oil and natural gas and grow substantially world wide.

In turn, that would need to ignore the knowledge by 1900 that
increased CO2 would cause a warming climate (see Foote, 1856,
Arrhenius, 1896), yet no counter action was taken.

Also that by 1900, Climate Change could be prevented by
discoveries about generating electricity and the inventions of
solar cells, wind turbines and electric vehicles with rechargeable
batteries (Castle and Hendry, 2022, provide a brief history).

So Climate Change was not inevitable.
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What determines the success of econometric
model-based forecasts?

Their success depends upon (see Hendry, 1997):
(a) there are regularities in the system being modeled;
(b) those regularities are informative about the future;
(c) the estimated model captures the regularities; yet:
(d) excludes irregularities that might swamp regularities.

There are regularities in both climate and macroeconomic data,
many of which are informative about the future
some embodied in empirical systems.

However, sudden unanticipated changes are not rare and can be
large, leading to forecast failure (see Castle et al., 2021a, 2021b,
for principles of forecasting applicable to non-stationary
processes and model selection when forecasting).

Recent examples with substantial impacts on climate-related
economic variables include the ‘Financial Crisis’, COVID
pandemic and Russia’s invasion of Ukraine.
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Route Map

1 A look at some climate data

2 A multivariate cointegrated VAR of climate variables

3 Forecasting climate change

4 Is there evidence of tipping points?

5 Conclusions
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Global temperature anomalies

AT: Global air temperature anomaly 
95% upper/lower bound 

1860 1880 1900 1920 1940 1960 1980 2000 2020

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

°C
AT: Global air temperature anomaly 
95% upper/lower bound 

Global temperature anomaly shows increasing trend
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Global temperature anomalies

AT: Global air temperature anomaly 
ATNH: Northern hemisphere temperature anomaly 
ATSH: Southern hemisphere temperature anomaly 
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AT: Global air temperature anomaly 
ATNH: Northern hemisphere temperature anomaly 
ATSH: Southern hemisphere temperature anomaly 

Northern and southern hemispheres warming at different rates
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Global temperature anomalies

AT: Global air temperature anomaly 
ATNH: Northern hemisphere temperature anomaly 
ATSH: Southern hemisphere temperature anomaly 
Broken trend by TIS 
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ATNH: Northern hemisphere temperature anomaly 
ATSH: Southern hemisphere temperature anomaly 
Broken trend by TIS 

Broken linear trends reveal increasing trend in temperature rise
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Global temperature anomalies

AT: Global air temperature anomaly 
ATNH: Northern hemisphere temperature anomaly 
ATSH: Southern hemisphere temperature anomaly 
Broken trend by TIS 
Non-linear trend 
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ATSH: Southern hemisphere temperature anomaly 
Broken trend by TIS 
Non-linear trend 

Broken linear or non-linear trends show similar rise
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Sea surface temperature anomalies

SST: global sea surface temp anomaly 
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SST: global sea surface temp anomaly 

Oceans are also warming rapidly
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Sea surface temperature anomalies

SST: global sea surface temp anomaly 
SSTNH: Northern hemi sea surface temp anomaly 
SSTSH: Southern hemi sea surface temp anomaly 
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SST: global sea surface temp anomaly 
SSTNH: Northern hemi sea surface temp anomaly 
SSTSH: Southern hemi sea surface temp anomaly 

Northern and southern hemisphere oceans also warming at
varying rates
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Ocean heat content anomalies

OH700: Ocean heat content 700m (IAP) 
OH700: Ocean heat content 700m (NOAA) 
OH700: Ocean heat content 700m (MRI) 
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OH700: Ocean heat content 700m (IAP) 
OH700: Ocean heat content 700m (NOAA) 
OH700: Ocean heat content 700m (MRI) 

The warming extends to the shallow and deep oceans
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Ocean heat content anomalies

OH700: Ocean heat content 700m (IAP) 
OH700: Ocean heat content 700m (NOAA) 
OH700: Ocean heat content 700m (MRI) 
OH2000: Ocean heat content 2000m (NOAA) 
OH2000: Ocean heat content 2000m (MRI) 
OH2000: Ocean heat content 2000m (IAP) 
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Estimates vary but consistently predict rising heat content
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Non-constant change

A common feature is non-constant change: changes keep
changing, sometimes accelerating, sometimes slowing and
occasionally dropping.

This makes forecasting difficult as changes in the change are
hard to anticipate.

A break during a forecast interval will later become a break
in-sample so will contaminate estimation of the parameters of
econometric models unless properly handled.
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What can econometricians contribute?

Human behavior is key determinant of climate change,
particularly from burning fossil fuels like coal, oil and natural gas,
and agriculture releasing greenhouse gases (GHGs) such as
carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4),
which cumulate in the atmosphere and reflect back radiation.

Macro-econometricians model aggregate human economic
behavior which is non-stationary from evolving trends and breaks
deriving from pandemics, wars, technical progress, financial
innovation, demography, and economic policy regimes.

These have impacts on the climate, so climate data is also
non-stationary, and in turn feeds back on economic outcomes,
especially through extreme events like wild fires, cyclones, floods
and droughts.

Econometricians have tools for jointly modelling interacting
systems of non-stationary time series.
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Climate Science

Characterised by complex interaction between atmosphere,
oceans and land
Influenced by:

natural forces: solar radiation; seasons; plate tectonics; volcanic
eruptions; El Niño; etc.

anthropogenic factors: burning fossil fuels; land use for agriculture
& forestry; dams to store water; etc.

and consequences of their interactions: reduced albedo from
melting Arctic ice; aerosol pollution; changes in rainfall and cloud
cover; wild fires; coastal erosion; etc.

Emissions of GHGs from natural and anthropogenic sources
cumulate in the atmosphere and re-radiate energy from the sun
back to the planet, hence the label greenhouse gases.
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Natural and anthropogenic forcing

Climate forcing: an imposed change in Earth’s energy balance
(Hansen et al., 2017).

Total radiative forcing: sum of all forcings, whether natural or
anthropogenic.

IPCC provide estimates of total radiative forcing from
anthropogenic sources.
Natural forcings due to solar irradiance and stratospheric
aerosols from volcanic eruptions.
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Effective radiative forcing

Natural Forcings 
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Radiative forcing estimated by CMIP6
Historical simulations using GISS-E2.1 (w/m2)
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Effective radiative forcing

Natural Forcings 

1860 1880 1900 1920 1940 1960 1980 2000 2020

-1

0

1

2

3

Krakatoa 
         →

Mt Agung
            →

Mt Pinatubo
←

          ↑
Mt Pelee

↑
Novarupta

Natural Forcings 

Radiative forcing estimated by CMIP6
Historical simulations using GISS-E2.1 (w/m2)
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Effective radiative forcing
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Effective radiative forcing

GHG Forcings 
Aerosol Forcings 
Natural Forcings 

1860 1880 1900 1920 1940 1960 1980 2000 2020

-1

0

1

2

3
GHG Forcings 
Aerosol Forcings 
Natural Forcings 

Radiative forcing estimated by CMIP6
Historical simulations using GISS-E2.1 (w/m2)
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Natural cycles

Not all natural changes in Earth’s energy balance are forcings:
endogenous natural variability includes semi-periodic cycles
like El Niño Southern Oscillation; Atlantic Multidecadal
Oscillation; Pacific Decadal Oscillation.

Changes in temperatures from cycles have magnitudes large
enough to temporarily offset anthropogenic forcing & cause
apparent hiatuses (Kosaka and Xie, 2013) so may confound
policy analysis (Miller and Nam, 2020).
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ENSO and NAO: semi-periodic cycles

ENSO annual average 
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El Niño-Southern Oscillation and North Atlantic Oscillation
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ENSO and NAO: semi-periodic cycles

ENSO annual average DENSO 
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Indicators showing years with oceans warming or cooling
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GHGs have been increasing rapidly

Rapid increases in CO2, N2O, and CH4 (Cheng and Redfern, 2022).

Atmospheric methane due to natural gas leaks, tundra melting,
animal husbandry, and increase in wildfires (release carbon
monoxide that nullifies hydroxl free radicals that help remove
methane).

Latest IPCC report notes methane responsible for about 1
3 of the

1.5◦C of global warming, offset in part by sulphur dioxide
emissions cooling around 0.5◦C, so total warming is now about
1◦C, with half due to CO2.

All GHGs including chlorofluorocarbons (CFCs), hydroCFCs,
HFCs and sulfur hexafluoride (SF6) contribute to radiative forcing
so the Earth receives more incoming energy from sunlight than it
radiates back to space.
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Emissions of greenhouse gasses
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Global greenhouse gas emissions by gas
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Global CO2 concentrations
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Global CO2 concentrations in parts per million (ppm)
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Global CO2 concentrations

Global CO2 concentrations 
Broken trend by TIS 
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Comparing to an overall linear trend highlights that the trend is
increasing.
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Annual change in CO2 concentrations
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Annual change in global CO2 concentrations in parts per million
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Annual change in CO2 concentrations

Annual change in global CO2 concentrations 
Broken trend by TIS 
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Change in measurement leading to increased volatility.
Rapidly increasing trend despite Paris Agreement.
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GHGs have been increasing rapidly

Pandemic lockdowns reduced GHG emissions but still emissions
greater than can be absorbed, leading to increased
concentrations.

Controling GDP growth is not likely to get society to climate
neutrality.
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Global CO2 emissions over the COVID pandemic
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Reductions in CO2 emissions in millions of tonnes (Mt) during
2020 from the SARS-Cov-2 pandemic compared to 2019.
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Global CO2 emissions over the COVID pandemic
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Even the drastic lockdowns during 2020 from the pandemic
barely dented emissions (in Mt so tiny compared to 4ppm).
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Characteristics of climate data

Climatic outcome depends on physical properties (energy
balance etc.) and human behavior

Climate time series are non-stationary; exhibiting inertia;
stochastic trends and distributional shifts from changing means
and variances over time.

Forecasting change is insufficient as many features of climate
change depend on levels of variables like atmospheric CO2,
which requires cumulating changes to levels when changes are
forecast.

Reasonably accurate forecasts of changes may cumulate to poor
forecasts of levels: if an average growth rate of 2% per annum is
forecast by 1.6% per annum, after five years the level is
underpredicted by 2%.
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Sea level rise

Most excess energy stored in climate system is taken up by
oceans, leading to thermal expansion & sea level rise, ‘baked in’
by slow adjustment to past temperatures (Jackson et al., 2018).

∴ forecasts of future serious coastal flooding are reliable
(Vousdoukas et al., 2018), although outcomes differ across RCPs
much worse if West Antarctic & Greenland ice masses melted
faster (Jackson et al., 2021).

Contribution from thermal expansion to sea level rise is
substantial (Jevrejeva et al., 2020).

Storm surge heights dependent on local conditions–and
resulting economic damages more so (Martinez, 2020; Jevrejeva
et al., 2018).

But sea-level rise will intensify coastal flood risk by changing
amplitude and occurrence of storm surges.
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Sea level rise and Arctic ice melt
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Sea level rise (OWID) and Arctic Ice melt (Copernicus)
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Sea level rise and Arctic ice melt
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Energy Balance Models (EBMs)

Complexity of physical climate models grown with computing
power, based on energy budgeting 1st law of thermodynamics

First Generation: Zero-dimensional EBM equates global
temperature change to a proportion of difference between incoming
solar energy & outgoing energy radiated by Earth.

1960s: one-dimensional EBMs explicitly model horizontal latitudinal
net heat transport (Budyko, 1969, Sellers, 1969).

1970s: One-and-a-half-dimensional/two-dimensional EBMs allow
horizontal net heat transport to be driven by more complex forces
so temperatures vary over latitude & longitude (Sellers, 1976).

Early EBMs either omitted anthropogenic components entirely or
had stochastic forcings that were weakly stationary but
anthropogenic forcings are not stationary!
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Direct links between climate models and
econometric systems

Cointegration applied to climate (Stern and Kaufmann, 2000).
Energy-balance model of global temperature, ocean heat content
and radiative forcing equivalent to cointegrated system estimated
from discrete time data (Pretis, 2020a).
Estimated parameters quantify uncertainties in IAMs of economic
impacts of climate change.
Accounting for structural breaks from volcanic eruptions
highlights parameter uncertainties, previous estimates of
temperature response to increased CO2 concentrations too low.
Moist energy-balance models allowing for horizontal net heat
transport equivalent to cointegrated system & allow for more
warming near poles than Equator (Brock and Miller, 2023).

Most climate econometric time-series analyses do not strictly
impose energy balance properties, allowing for measurement
error, etc., they seek to be consistent with conservation of energy
required by principles (first law) of thermodynamics.
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Route Map

1 A look at some climate data

2 A multivariate cointegrated VAR of climate variables

3 Forecasting climate change

4 Is there evidence of tipping points?

5 Conclusions
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System of climate variables

VAR specification

yt =

4∑
j=1

Πjyt−j + Γuzu,t ++Γrzr,t

+

T−1∑
k=2

λs,kS1881+k

T−1∑
k=3

λτ,kτ1881+k + νt

yt = (AT ,ERF,SST ,SL, ICE)t.
zr,t: restricted regressors including t (full sample deterministic trend).
zu,t: unrestricted stationary regressors including (const,ENSO,
DKrakatoa,DMtAgung,DPinatubo,DMtPelee,DNovarupta

)
t
.

Sxxxx: step indicator; 1 till date xxxx and 0 otherwise.
τxxxx: trend indicator; (−t,−t+ 1,−t+ 2, . . . , 0, 0, 0 . . .).

Note: AT temperature; ERF effective radiative forcing; SST sea
surface temperature; SL sea level; ICE Arctic ice.
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Saturation estimators

Indicator saturation estimators designed to detect outliers, shifts
in mean or in trends at any point in data sample without relying
on knowledge of their number, signs, magnitudes or timing.

Principle involves generating an indicator variable for every
observation in sample for adding to set of regressors to search
for their significance.

Indicator variables could be:
impulse dummies (IIS): ιj = 1 for t = j and 0 otherwise ∀j ∈ T .
step dummies (SIS): Sj,t = 1t⩽j and 0 otherwise.
trend breaks (TIS): cumulation of step indicators designed to be
zero in the forecast period.
multiplicative dummies (MIS): step indicators interacted with
conditioning regressors.

Adding all indicators at once results in perfect fit, but using tree
search algorithm with expanding & contracting block searches
allows all possible indicators to be investigated.
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Trend indicator saturation (TIS)

Trend indicators cumulate step indicators up to each next
observation.
Many equivalent forms, we use ø′1 = (−1, 0, 0, . . . , 0), up to
ø′T = (−T ,−(T − 1),−(T − 2), . . . ,−1) (implemented in
Autometrics, Doornik, 2009).
Conditioning variables zt could be retained without selection.

Differences between Step indicator saturation (SIS) and TIS:

trend indicators rapidly become highly collinear.

orders of convergence of estimators differ from
√
T .

Split-half approach (Hendry et al., 2008):

1 Add first T/2 trend indicators, record those significant at α.

2 Replace first half with remaining set of trend indicators, again
recording which are significant in that subset.

3 Combine recorded indicators from two stages, select at α.
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Distributional shifts

Climate change is not happening at a constant rate, so
forecasters need to handle non-stationarities caused by shifts
and breaks as well as smoothly-varying deterministic functions.

Arctic ice cover disappearing at increasingly rapid rates.
Accelerating ocean heat content and global sea-level rises.
Deterministic trends shown on plots are descriptive, not
components of DGPs, reflecting responses to increasing
atmospheric levels of GHGs.

Changes in dynamics as well as location shifts like impacts of
COVID-19 lockdowns on economic outcomes & ∴ GHGs.

Little can be done when unanticipated shifts occur after forecasts
made (sudden onset of COVID-19). Difficult even when
antecedents that might predict a shift (information going beyond
relevant discipline’s information on ‘regular forces’, e.g. advance
warning of El Niño.)
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Distributional shifts sea level rise
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Distributional shifts in Arctic sea ice extent

ICE 1860-1920 
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VAR specification

SIS & TIS applied at α = 0.01% keeping all other regressors.

S1947; τ1903; τ1938; τ1945; τ1946; τ1978 retained. Reductions to
combine the indicators in 1945, 1946 and 1947 rejected.

Lagged variables selected at 1%, reduced lag length to 1.

19 variables in each equation of system.

System is well-specified: all system diagnostic tests pass apart
from functional form at 5% (see non-linearity below).

Table: System diagnostic tests

Far(50, 505) = 1.22 second-order vector residual autocorrelation
χ2
nd(10) = 5.84 vector residual non-normality

Fhet(160, 525) = 1.03 vector residual heteroskedastcity
Freset(50, 505) = 1.42∗ RESET functional form
Fnl(240, 363) = 1.21 non-linearity index test
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Recursive residuals and constancy tests
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Rank determination

Table: Correlations between residuals (standard deviations on diagonal)

AT ERF SST SL ICE

AT 0.07
ERF 0.09 0.16
SST 0.77 0.22 0.05
SL 0.09 -0.02 0.03 4.91
ICE -0.30 0.16 -0.15 -0.01 0.18

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00 Roots of companion matrix

Eigenvalues of dynamics less than unity but we proceed to undertake
cointegration analysis on the system.
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Cointegrating relationships

Let Π = αβ′ where α is a (p× r) matrix of adjustment coefficients
describing which equations adjust, and β is a (p× r) matrix of
coefficients describing r long-run relations β′xt.

β′ =


1 −λ2 0 −λ4
0 1 λ3 0

−λ1 0 0 0
0 0 0 1
0 0 1 0




AT
ERF
SST
SL
ICE


CIa relates temperature to sea surface temperature (following
Pretis (2020b) who relates mixed layer temperature anomaly to
deep compartment temperature anomaly).
CIb relates temperature anomaly to effective radiative forcing, also
similar to Pretis (2020b).
CIc captures effect of radiative forcing on level of arctic ice.
CId maps relationship between temperatures and sea levels.
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Cointegrating relationships

Imposing theoretical constraints on β matrix along with
data-based restrictions on α matrix results in χ2

LR(13) = 8.63
(p− value = 0.80) so restrictions are comfortably accepted.

αβ′ =
−0.72
(0.063)

−0.74
(0.231)

0 0 0

0.09
(0.019)

−0.76
(0.045)

0.08
(0.015)

3.11
(1.60)

0.50
(0.064)

0 0 0 0 −0.87
(0.073)

0.002
(0.0001)

0.002
(0.0003)

0.002
(0.0001)

0 0





1 −0.60
(0.126)

0 −368
(28.1)

0 1 0.52
(0.055)

0

−1.23
(0.049)

0 0 0

0 0 0 1
0 0 1 0


Map to cointegrated system and undertake model reduction by
eliminating regressors in each equation that were insignificant at
1%. Allow for more complex short-run dynamics and
non-linearities.
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Stationary cointegrating relationships

Ca  = AT−λ1SST 
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Model of climate variables

∆ATt = −0.81
(0.07)

CIa,t−1 + 0.15
(0.02)

CIb,t−1 − 0.018
(0.004)

CIc,t−1 + 0.0013
(0.0001)

CId,t−1

+0.09
(0.01)

ENSOt + 0.31
(0.07)

I1946

∆ERFt = −0.73
(0.05)

CIb,t−1 − 0.002
(0.0004)

CId,t−1 − 3.57
(0.25)

+ 1.35
(0.14)

DKrakatoa + 0.83
(0.16)

DMtPelee

+1.52
(0.14)

DPinatubo + 1.55
(0.14)

DMtAgung + 0.58
(0.14)

DNovarupta + 0.36
(0.16)

I1946

∆SSTt = +0.15
(0.01)

CIb,t−1 + 0.0009
(0.00009)

CId,t−1 + 0.09
(0.009)

ENSOt + 0.04
(0.01)

∆ERF2t−1

−0.35
(0.06)

I1946

∆SLt = −1.29
(0.23)

CIb,t−1 − 0.32
(0.08)

∆SLt−1 − 18.26
(4.47)

DKrakatoa + 5.05
(1.63)

∆ERF2t−1

+0.036
(0.01)

τ2011

∆ICEt = +0.42
(0.06)

CIb,t−1 − 0.81
(0.08)

CIc,t−1 + 15.55
(1.54)

− 0.55
(0.16)

DMtAgung + 0.85
(0.18)

I1946
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Model fit, residuals, residual density and correlogram
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Route Map

1 A look at some climate data

2 A multivariate cointegrated VAR of climate variables

3 Forecasting climate change

4 Is there evidence of tipping points?

5 Conclusions
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Global Climate Models

Forecasts or scenario projections

Climate scientists produce simulations of an underlying physical
climate model: conditional forecasts with certain anthropogenic
scenarios in mind.

Climate forecasts now produced by global climate models. High
level of complexity & spatial/temporal disaggregation.

Representative Concentration Pathways (RCPs): focus on
concentrations of GHGs rather than emissions (Moss et al.,
2010).

Shared Socioeconomic Pathways (SSP): expand on RCPs by
allowing for alternative scenarios in economic and population
growth (Riahi et al., 2017).
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Uncertainty

Uncertainty around initial conditions of climate forecasts. Slight
mistakes in measured state of atmosphere can grow rapidly over
time leading to large errors in future.
Ensemble forecasts (computer model run a number of times from
slightly different initial conditions) used to estimate uncertainty
around central forecast (Palmer, 2006, 2022).

Future path of GHGs highly uncertain (dependent on human use
of fossil fuels & agriculture) so projections conditional on
concentration pathways rather than unconditional outcomes.

Interpretation of uncertainty from climate models differs to that of
economic or statistical models:

Climate models: uncertainty based on common set of input data
but different models and different initial conditions.

Statistical models: uncertainty from known model with unknown
coefficients and error specification for unobserved determinants.
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Statistical forecasts

Why use statistical forecasting methods for predicting climate?

forecast horizon typically longer than traditional economic
forecasting;

for longer horizon forecasts non-stationarity plays a key role;

breaks in trend over forecast period inherently unpredictable,
depending on exogenous shocks and distant policy changes;

conditional forecasts based on assumptions regarding future
policy and events are feasible;

key feature of forecasting models is whether they are closed
(all their variables are modeled), or open (some variables are
unmodeled and conditional forecasts are made);

exogeneity of conditioning variables matters concerning
linking economic outputs to temperature, or the opposite;

invariance of model parameters to policy interventions and
environmental changes crucial.
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Dynamic forecasts of changes in climate variables
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Forecasts for 2011-2022, using model estimated up to 2010.
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Dynamic forecasts of climate variables
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Integrated forecasts from VEqCM over 2011-2022.
model estimated to 2010.
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Dynamic forecasts of cointegrating relations
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Dynamic forecasts of the cointegrating relations over 2011-2022.
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Long-run information matters for forecasts

VEqCM VAR levels VAR diffs
ISE ISE

AT 0.04 0.06 0.16 0.12 0.05
ERF 0.17 0.38 0.64 0.22 0.21
SST 0.04 0.07 0.13 0.16 0.08
SL 5.29 10.63 30.93 9.81 4.63
ICE 0.25 0.35 0.52 0.35 0.28

RMSFEs for 12 dynamic forecasts over 2011-2022.

VAR levels: VAR in (AT ,ERF,SST ,SL, ICE) with 2 lags (selected
from 4), conditioning on ENSO & volcano dummies.
VAR diffs: VAR in (∆AT ,∆ERF,∆SST ,∆SL,∆ICE) with 1 lag
(selected from 3), conditioning on ENSO & volcano dummies
variables. Level forecasts from integrating differenced forecasts.
ISE: Indicator saturation estimators. For levels IIS & TIS at
α = 0.01%; for differences IIS & SIS at α = 0.1%
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System forecasts outperform univariate forecasts

VEqCM AR(1) TIS RW
AT 0.04 0.36 0.09 0.15
ERF 0.17 1.51 0.32 0.65
SST 0.04 0.34 0.08 0.16
SL 5.29 3.70 13.15 20.22
ICE 0.25 0.83 0.29 0.42

RMSFEs for 12 dynamic forecasts over 2011-2022.

AR(1): Univariate AR(1) model for each endogenous variable,
estimated over 1882-2010.

TIS: Trend indicator saturation applied at α = 0.01% with fixed
constant and trend, estimated over 1882-2010.

RW: Random walk forecast.
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Forecasts to 2050
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System closed apart from ENSO which is assumed to be zero
over forecast horizon
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Forecasts to 2050
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Evaluate ERF forecasts relative to physical model projections.
Systematic forecast bias suggesting structural break.
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Conditional Forecasts

All stochastic variables are endogenous (trend shift variables are
zero after their end dates) apart from ENSO.
If ENSO can be accurately forecast, could condition on those
forecasts but Hendry and Mizon (2011) show many additional
problems for open models so often pays to omit.

Absent future trend breaks, predictions for 2050 are:

Global temperatures will be 1.6◦C above 1961− 1990 ave.

Global sea surface temperatures will be 1.3◦C above
1961− 1990 ave.

Global sea level rise will be 170mm above 1993− 2008 ave.

Arctic Ice extent will be reduced to 9bn m/km2.

Forecasts are conditional on current trends, incorporating
feedbacks from ocean warming, sea-level rise and ice melt.
The forecasts do not condition on the future path of radiative
forcing.
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Scenario Forecasts

Shared Socio-economic Pathways (SSPs) used by IPCC.

Five SSPs embody narratives on population, GDP and
urbanization trajectories, & assumptions on energy and land use
sectors, see O’Neill et al. (2017):

SSP1 Sustainability – taking the green road.
SSP2 Middle of the road.
SSP3 Regional rivalry – a rocky road.
SSP4 Inequality – a road divided.
SSP5 Fossil fuel development – taking the highway.

Provide baseline and mitigation scenarios based on
Representative Concentration Pathways (RCPs) which impose
forcing targets (6.0; 4.5; 3.4; 2.6W/m2 in 2100).

SSPs recorded at decadal intervals from 2010. Linear
interpolation using unobserved components model (STAMP;
Koopman et al., 2013).
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Projections for radiative forcing
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Projected radiative forcing under SSPs using AIM/CGE model,
see Riahi et al. (2017).
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Conditioning on radiative forcing

To implement the forecasts assuming a projected path for
radiative forcing change ERF from endogenous to exogenous and
estimate a 4 variable system conditioning on ERF.

The quadratic term ∆ERF2t−1 is obtained from the scenario
projections.

The cointegrating relations are identities based on the scenario
projections and are forecast within the system.

The model is unchanged to 2023, but the forecasts condition on a
known future path for ERF.
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Forecasts of global temperature to 2050
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Forecasts of global temperature to 2050
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Forecasts are uncertain

2050 2100
AT 1.29− 1.69◦C 1.62− 2.59◦C
SST 0.96− 1.37◦C 1.0− 2.02◦C
SL 169− 183mm 357− 472mm
ICE 9.0− 9.1bn m2 6.1− 6.7bn m/km2

Range of forecasts from SSP1-19–SSP5-60 in ◦C

Benchmarks
IPCC predicts AT of 1.5◦C in 2050 and 2− 4◦C by 2100.
SST is predicted to rise to between 1.2◦C and 3.2◦C by 2100.
IPCC has a wide range for SL in 2100 of between 430− 840mm.
There are predictions that Arctic ICE could disappear by 2100.
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Route Map

1 A look at some climate data

2 A multivariate cointegrated VAR of climate variables

3 Forecasting climate change

4 Is there evidence of tipping points?

5 Conclusions
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Tipping points

Tipping points: a small change causes a large response (Lenton
et al., 2008, Lenton, 2013).

Difficult to forecast occurrence of tipping points.
But short sequence of large one-sided 1-step ahead forecast
errors occurring as forecast origin advances suggests sudden
change from previous model.
Could be due to large measurement errors, step shift in mean of
the process, or a sudden rapid change.

Use saturation estimation on Arctic ice equation to see if we can
improve on forecasts.
Method: Test whether first two or three significant indicators can
be replaced by broken linear or log-linear trend to capture sudden
rapid changes.

Jennifer Castle (Magdalen College) Econometric Forecasting of Climate Change 15 May 2024 59 / 67



Magdalen 

College
University of Oxford

Tipping points

Tipping points: a small change causes a large response (Lenton
et al., 2008, Lenton, 2013).

Difficult to forecast occurrence of tipping points.
But short sequence of large one-sided 1-step ahead forecast
errors occurring as forecast origin advances suggests sudden
change from previous model.
Could be due to large measurement errors, step shift in mean of
the process, or a sudden rapid change.

Use saturation estimation on Arctic ice equation to see if we can
improve on forecasts.
Method: Test whether first two or three significant indicators can
be replaced by broken linear or log-linear trend to capture sudden
rapid changes.

Jennifer Castle (Magdalen College) Econometric Forecasting of Climate Change 15 May 2024 59 / 67



Magdalen 

College
University of Oxford

Arctic ice equation

Forecasts for third cointegrating relation suggest a possible shift
in 2021/22.
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Equation for sea level estimated over 1882-2022

∆ICEt = + 0.42
(0.06)

CIb,t−1 − 0.81
(0.08)

CIc,t−1 + 15.55
(1.54)

− 0.55
(0.16)

DMtAgung + 0.85
(0.18)

I1946

Is there a break in the last few years of data?
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Testing for a tipping point

Estimate the Arctic ice equation in levels up to 2021 including
an impulse indicator for 2021 and test for significance:
t̂I2021 = 2.01.

Extend sample by 1 observation test if impulse indicator in
2021 and 2022 is significant: t̂I2021 = 2.01; t̂I2022 = 1.8. Joint test
Fexcl(2, 155) = 3.6∗.

Replace indicators with linear trend extending into forecast
period and estimate with 2 observations: t̂τ2021,22 = 2.4.

Replace indicators with log-linear trend extending into forecast
period and estimate with 2 observations: t̂log(τ2021,22) = 2.48.

Compute out-of-sample forecasts and average across linear
and log-linear trend.
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Forecasts for Arctic Ice in 2023

Actual VEqCM log (τ) τ Ave (τ) Ave
Fcast 10.94 10.70 11.19 11.29 11.24 11.06
ê2023 0.24 -0.24 -0.35 -0.29 -0.12

log (τ) estimates the Arctic ice equation in levels with a log-linear
trend commencing in 2021.

τ estimates the Arctic ice equation in levels with a linear trend
commencing in 2021.

Ave (τ) computes an equally weighted average of log (τ) and τ.

Ave computes an equally weighted average of the system
forecasts of the level of Arctic ice from VEqCM and log (τ) and τ.
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Forecasts for Arctic Ice in 2023
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Summary of tipping point detection

Significance of impulse indicators is marginal.

Forecasts using trend correction show a reversal of trend in
ice extent relative to system forecasts.

No clear evidence of a positive tipping point (i.e. slow down in
arctic ice melt).

Need more observations to distinguish between measurement,
outlier or changing trend.

Operate detection methods sequentially as new data arrives.
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Route Map

1 A look at some climate data
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Conclusions

Econometric methods have a useful role to play in climate
modeling: outcomes are determined by human behavior
interacting with physical properties of Earth’s climate system.

Time-series data is non-stationary from stochastic trends &
location and trend shifts making forecasts uncertain & prone to
failure.

Unanticipated changes cannot be avoided but later become
in-sample, so modeling must take account of them to avoid
distortions in parameter estimates & resulting forecasts.

Climate change is not a given but an anthropogenic outcome. It
is possible to get to net-zero GHG emissions by 2050: the speed
and form of such a transition will impact on climate forecasting.
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Conclusions

Thank you!
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Data Generating Process

To investigate we use simulated data:

yt = β0,t + β1,tzt + ϵt where ϵt ∼ IN[0,σ2
ϵ]

zt = γ0 + γ1t+ νt where νt ∼ IN[0,σ2
ν]

β0,t = 10 & β1,t = 1 for t = 1, . . . , 60; β0,t = −50 & β1,t = 2 for
t = 61, . . . , 100; γ0 = 0, γ1 = 1, σ2

ϵ = 1, σ2
ν = 0.001, deliberately set

to a tiny value to mimic a trend.
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TIS using split-half approach under the null
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TIS using split-half approach under the null

0 50 100

-50

0
Indicators initially included

B
lo

ck
 1

0.0 0.5 1.0

0.5

1.0
Indicators retained

No indicators 
retained at α=5%

Actual 
Fitted 

0 50 100

50

100

Selected model: Actual and Fitted

Fixed regressors:
Constant and Trend

Actual 
Fitted 

0 50 100

-50

0

B
lo

ck
 2

T64 

0 50 100

-50

0

T=64 retained at 5% 
using 1-cut selection
(p=0.042)

T64 Actual 
Fitted 

0 50 100

50

100

Fixed regressors:
Constant and Trend

Actual 
Fitted 

T64 

0 50 100

-50

0

Fi
na

l

T64 

0.0 0.5 1.0

0.5

1.0

Indicator not 
significant at α=5% Actual 

Fitted 

0 50 100

50

100

Fixed regressors:
Constant and Trend

Correct model found 
despite search over
 T−2 regressors

Actual 
Fitted 

Jennifer Castle (Magdalen College) Econometric Forecasting of Climate Change 15 May 2024 69 / 67



Magdalen 

College
University of Oxford

TIS under the alternative: a break in trend at T=60
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TIS under the alternative: a break in trend at T=60
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Multipath search Autometrics
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Multipath search Autometrics
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Trend break at T=60: Forecasting using TIS
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Trend break at T=60: Forecasting using TIS
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Trend break at T=60: Forecasting using TIS
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Intercept correction isn’t sufficient

Not correctly modeling trend breaks in-sample leads to poor
forecasts. Not sufficient to intercept correct at forecast origin.
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Intercept corrected forecast with no TIS 
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Trend breaks must be modeled in-sample, even if long way from
forecast origin. Use full sample rather than just post-break data.
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