

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

WP. 3 Data Tools & Services

Project Achievements T.Block

WP 3 Aims

WP 3 covers all tasks related to software tools and data formats used in the FIDUCEO project.

Three groups of tasks

- Multisensor Matchup System (MMS)
- CDR and FCDR data format and tools
- Data handling and user support

Overview

1. Multisensor Matchup System

- System description
- Data processed

2. Data Format and Tools

- Format description
- Supportive tools

3. Data Handling and User Support

Task 3.1 MMS

- MMS evolved from a first idea to a mature, scalable and high-performance processing framework.
- Multiple plugin-points allow extensions
- Highly configurable
- Massively parallel execution
- Self-contained output data
- Exhaustive manual
- GPL open software

Task 3.1 MMS (2)

- Three components
 - Ingestion tool
 - Matchup tool
 - Post-Processing tool
- Supportive components
 - GIS-Database system
 - Glue-code to JASMIN LSF

Task 3.1 MMS (3)

- Input data
 - 2.2 million metadata records
 - 400 TB input products
 - Covering 17 satellite sensors and 3 in-situ data types
 - AIRS, AMSR-2, AMSR-E, AMSU-B, (A)ATSR, AVHRR (GAC/FRAC/FCDR), CALIOP (Clay/VFM), HIRS (reproc./FCDR), IASI, MHS, MODIS MxD06, SLSTR, SSM-T2
 - SST-CCI, OceanRain, GRUAN

Task 3.1 MMS (4)

- Output data
 - 21 MMDs calculated
 - Total volume of MMDs: 4.75 TB
 - Total processing time: 730 hours using ~ 100 CPUs
 - Which sums up to 8.3 CPU years

Thanks to JASMIN to provide parallel processing capabilities!

Task 3.1 MMS (5)

- Problems:
 - Availability of processing resources
- Lessons learned:
 - New technique to detect matchups quickly
 - Use of spherical geometry library
 - Switchable databases
 - Configuration of an MMD processing is a tedious task
- Missing:
 - Validation tool / plotting tool for MMDs

Task 3.2 FCDR Data Format

- FCDR format specification iteratively developed
- Close collaboration with sensor teams
- 15 releases during project time
- Final version confirmed by all teams
- Covers all sensor FCDRs

Task 3.2 FCDR Data Format (2)

- Format specification covers
 - File naming conventions
 - Global metadata content
 - Definition of correlation and probability density functions
 - Definition of virtual variable syntax
 - Definition of common variables and dimension names
 - Sensor specific variables for EASY and FULL format

Task 3.3 FCDR I/O Software

- Supportive software module
 - FCDRWriter
 - FCDRReader
- Python library
 - Tested with 2.7, 3.5 and 3.6
 - Test-driven development, test-coverage > 98%
 - Build server support
- Integrated into sensor teams processing code (except MW FCDR)

Task 3.3 FCDR I/O Software (2)

- FCDRWriter
 - Implements FCDR product specification
 - Ensures format fidelity of data
 - Simplifies processing tools:
 - Request product template
 - Fill in data
 - Generate product file name
 - Write
 - Automated checks
 - Missing data
 - Numerical over/underflows

Task 3.3 FCDR I/O Software (3)

- FCDRReader
 - Generally not required, data is NetCDF self descriptive
 - Reader module treats virtual variables
 - Expand the mathematical expression to data
 - On-the-fly calculation when variable is touched

Task 3.4 CDR Data Format

- CDR format specification iteratively developed
- Close collaboration with CDR teams
- Final version confirmed by teams
- Covers all CDRs
 - Global metadata
 - Common data
 - CDR specific variables
 - File naming convention

Task 3.5 CDR I/O Software

- Supportive software module for writing CDRs
- Implements CDR format specification
- Similar approach as FCDR tools
- Shared code-base
- Re-use of common functionality
 - Over/underflow detection
 - File name generation
 - Many more ...
- Reader module not necessary

Task 3.6 Tools

- Tool for uncertainty propagation for L2 retrieval algorithms
 - Python cmd-line tool
 - Framework and user-plugin points
 - Supports all easy FCDRs
- Example implementations for
 - UTH, SST and NDVI
- Implements full "CURUC" math, taking interchannel correlations into account
- Estimate uncertainty budget of user retrieval algorithms

Task 3.7 Final FCDR and CDR

Task 3.8 Archiving

Will be covered by Esther Conway WP7 - Data archiving and availability

WP 3 Deliverables

- PD3.1 FIDUCEO Multi-sensor Match up system Implementation Plan - done
- PD3.2 Multi-sensor matchup system implementing identified use cases - done
- D3.1 Description of easy FCDR format done
- D3.2 Description of CDR format done
- D3.3 Software for easy FCDR format done
- D3.4 Software for CDR format done
- PD3.3 Software regridding tool re-defined: uncertainty propagation tool - done

WP 3 Deliverables (2)

- D3.5 FIDUCEO data converted to new formats – done
- PD3.4 Dataset: FIDUCEO publically available from archives – ongoing activity

Thank you!

