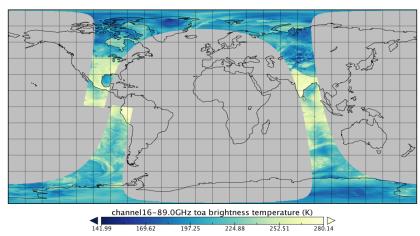
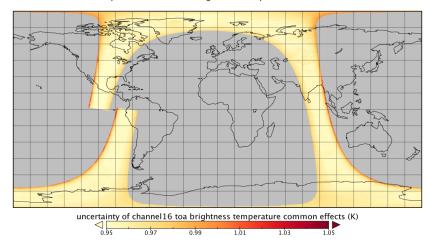


FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

Imke Hans, Martin Burgdorf, Stefan A. Buehler

OVERVIEW OF WORK DONE




FEATURES OF FIDUCEO FCDR & EXAMPLE CONTENTS

channel16-89.0GHz toa brightness temperature

- Data format: NetCDF
 - Easy to use
 - Attributes explaining the content of the variables
- Data arrangement: Equator to Equator
- On Pixel-level:
 - Brightness temperatures for all 5 channels
 - Uncertainties due to independent effects
 - Uncertainties due to structured effects
 - Uncertainties due to common effects
 - Quality information
- Information on transmitter status in bitmask for scan line quality (helpful for RFI related issues)
- Per scan line: original scan line number and file (level1b)

uncertainty of channel16 to a brightness temperature common effects

AAPD Errors Corrected

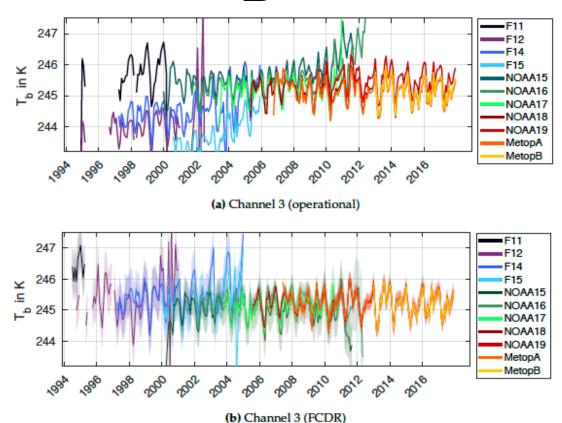
RV3

Existing Level 1c Data

- Outdated natural constants
- Too small angular threshold for Moon intrusion
- Arbitrary weights of PRTs
- Band correction the same for IWCT and DSV
- Wrong APC for AMSU-B (ch. 4, 5) and MHS on NOAA-18
- RFI correction N15/17 only

Fiduceo Easy FCDR

- Correct natural constants
- Correct identification of Moon in DSV
- Good PRT no. 6 included
- Different band corrections for IWCT and DSV
- Appropriate antenna pattern correction
- RFI correction also N16/19



MAJOR ACHIEVEMENTS

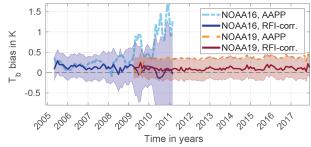
Comparison of the Time Series of T_B in Channel 3

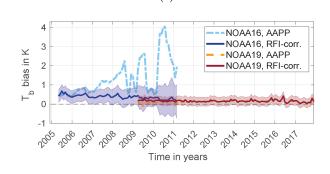
- The FCDR from FIDUCEO provides more consistent and stable time series
- The shaded regions denote the uncertainty due to common effects for FIDUCEO
 - There is no uncertainty estimate on pixel level for the products of AAPP

UΗ

PROBLEMS ENCOUNTERED AND SOLUTIONS

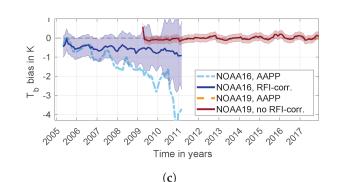
RV3





RFI Correction Removes Inter-Satellite Biases

Biases in Channels 3-5


- Problem: significant biases with AMSU-B on N-16 and MHS on N-19
- Observation: receiver gains have fallen with N-16
- Standard correction: Monthly intercalibration coefficients
- FIDUCEO correction: FOVspecific values added to Earth counts
- Remaining biases up to five times smaller with FIDUCEO

(b)

(a)

DELIVERABLES AND MILESTONES

Deliverables

- Radiances for all channels of eleven different MW humidity sounders
- Consistent calibration model for whole series
- Known issues taken into account
- Harmonized measurement equation parameters
- Quick start and user guide
- Metrological assessment
- Scientific basis

Delivered

- Full measurement equation
- ... and previously unknown features as well
- Not feasible by Feb 2019
- Complete documentation incl. several publications in refereed journals

RECOMMENDATIONS FOR FUTURE

RV3

Pros and Cons of Harmonization

Questions Concerning Harmonization

- What are the uncertainties of the biases?
- How to calculate biases (NCT, DDs over O-B, SNO, OCTM)?
- Does a harmonization based on SNO reduce all biases?
- Is MHS on NOAA-18 a good reference instrument?
- Are comparisons among similar instruments good checks of their stability?
- Is it possible to establish an absolute flux reference that is observed by every sounder times per year during the whole mission?

