Reprocessing of Fundamental Climate Data Records From Microwave Sounders

M. J. Burgdorf, S. A. Buehler, I. Hans
Universität Hamburg
V. John
EUMETSAT
FIDelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO) - What Is It About?

• **Need**: trustworthy information about climatic variability and change over decades
 • – rigorous science, including improving prediction
 • – decision making, e.g. putting the future in context
 • – climate services, meeting information needs
• **Problem**: proving the “trustworthy” part is hard. Often hasn’t been done well even for prominent, much-used data sets

• **FIDUCEO answer**: demonstrate “trustworthiness” across several FCDRs and CDRs and promote the methodologies across the EO-climate community
 • – methods, guidance and tools
Fiduceo Aims: Uncertainty-quantified FCDR

<table>
<thead>
<tr>
<th>DATASET</th>
<th>NATURE</th>
<th>POSSIBLE USES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR FCDR</td>
<td>Harmonised infra-red radiances and best available reflectance radiances, 1982 - 2016</td>
<td>SST, LSWT, aerosol, LST, phenology, cloud properties, surface reflectance ...</td>
</tr>
<tr>
<td>HIRS FCDR</td>
<td>Harmonised infra-red radiances, 1982 - 2016</td>
<td>Atmospheric humidity, NWP re-analysis, stratospheric aerosol ...</td>
</tr>
<tr>
<td>MW Sounder FCDR</td>
<td>Harmonised μwave BTs for AMSU-B and equivalent channels, 1992 – 2016</td>
<td>Atmospheric humidity, NWP re-analysis ...</td>
</tr>
<tr>
<td>Meteosat VIS FCDR</td>
<td>Improved visible spectral response functions and radiance 1982 to 2016</td>
<td>Albedo, aerosol, NWP re-analysis, cloud, wind motion vectors ...</td>
</tr>
</tbody>
</table>

At all data set scales there is adequate quantification of error distributions to propagate uncertainty across all data transformations accounting for error correlation structures
Main Processing Chain for Microwave Humidity Sounders

- PRTs on internal target
- SSM/T 2
 - or
 - AMSU-B Level 1b
 - or
 - MHS Level 1b

Reference Radiance Temperature Computation

Gain (slope)

S

Raw instrument counts references

Linear assumption calculation

Linear assumption Earth view radiance

Antenna pattern and RFI correction

Non-linear coefficient correction

Manual scan bias correction

Temperature conversion (Planck or Rayleigh-Jeans)

Level 1c

$R_i = R_C + S(C_E - C_C)$
Earth View Radiance = cold space radiance + gain times count difference earth to cold space. Assumes linear gain, S

Antenna: Hewison and Saunders, 1996
RFI: Atkinson, 2001

John et al. J. Geophys Res. 118, p1
Analysis: Error Related to BB Temperatures

- Calibration target not thermally controlled, insulated from instrument
 - $\sigma = 1.2 \text{ mK}$
 - changes $< 0.1 \text{ mK/} \text{sec}$
 - gradients $< 100 \text{ mK/} ^\circ$
 - accuracy $< 100 \text{ mK}$

- No strong correlation between gain and temperature drifts

- Several days needed to reach stable conditions after data drop-out
Cross-Comparison: SSM/T2, AMSU-B, MHS, and HIRS

- Problem: observations at different local times
- Solutions:
 - opportunities for SNOs from orbit drift
 - small diurnal variations in subsidence zones
- Problem: Clouds affect infrared more than microwave
- Solution: Optimize cloud detection algorithms
<table>
<thead>
<tr>
<th>DATASET</th>
<th>NATURE</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Temperature CDRs</td>
<td>Ensemble SST and lake surface water temperature</td>
<td>Most of climate science model evaluation, re-analysis, derived/synthesis products ...</td>
</tr>
<tr>
<td>UTH CDR</td>
<td>From HIRS and MW, 1992 - 2016</td>
<td>Sensitive climate change metric, re-analysis ...</td>
</tr>
<tr>
<td>Albedo and aerosol CDRs</td>
<td>From M5 - 7, 1995 – 2006</td>
<td>Climate forcing and change, health ...</td>
</tr>
<tr>
<td>Aerosol CDR</td>
<td>2002 – 2012 aerosol for Europe and Africa from AVHRR</td>
<td>Climate forcing and change, health ...</td>
</tr>
</tbody>
</table>

Uncertainty information that (i) discriminates more and less certain data, (ii) is validated as being realistic in magnitude, (iii) is traceable back to the FCDR uncertainty information.
FIDUCEO FCDR/CDR Improvements

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Typical FCDR</th>
<th>FIDUCEO</th>
<th>Typical CDR</th>
<th>FIDUCEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble spanning all forms of uncertainty</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>End-to-end traceability and propagation of uncertainty</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Satellite-series harmonisation at radiance level based on rigorous physics</td>
<td>Some examples (e.g. MW); Others seem ad-hoc</td>
<td>Yes</td>
<td>Some examples</td>
<td>Yes</td>
</tr>
<tr>
<td>Uncertainty estimates for every pixel</td>
<td>No, usually generic values at best</td>
<td>Yes</td>
<td>Some examples</td>
<td>Yes</td>
</tr>
<tr>
<td>Uncertainty components support uncertainty propagation in aggregated data</td>
<td>No</td>
<td>Yes</td>
<td>One known example</td>
<td>Yes</td>
</tr>
</tbody>
</table>