

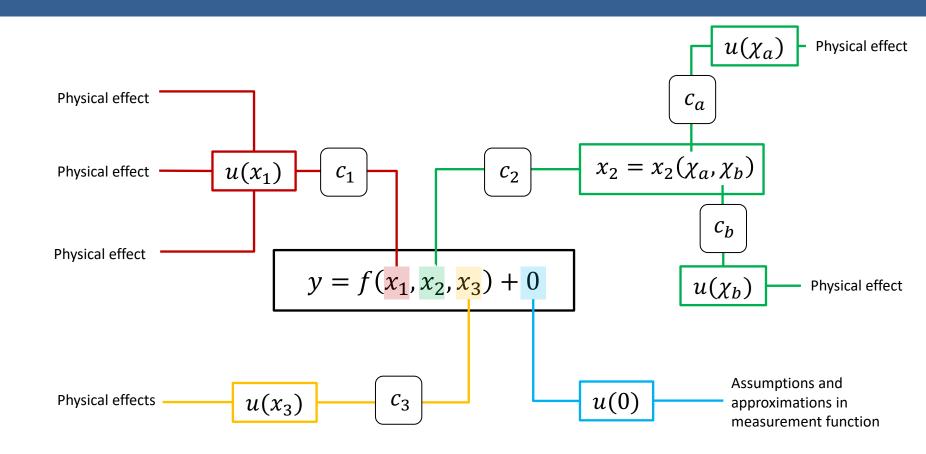
FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

FIDUCEO workshop Lisbon 17-19th April 2018

Uncertainty Concepts 2:

Error Correlation & Covariance

Recap – Measurement Functions



Recap – Law of the Propagation of Uncertainties

$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)$$

- $u_c^2(y)$ Combined uncertainty of measurand
- $u^2(x_i)$ Uncertainty of each input quantity
- c_i Sensitivity of the measurand to the input quantity
- $u(x_i, x_j)$ Covariance of input quantities x_i and x_j

(Much simpler matrix form coming later....)

Covariance

Measure of the joint variability of two variables,

$$u(x_i, x_j) = r_{ij} u(x_i)u(x_j)$$

Covariance

Measure of the joint variability of two variables,

$$u(x_i, x_j) = r_{ij} u(x_i)u(x_j)$$

• r_{ij} – error correlation coefficient between input quantities x_i and x_j

Error Correlation Structures: Independent Errors

If the errors of measured values x_i and x_j are entirely independent of each other,

$$r_{ij}=0$$
,

so that,

$$u(x_i, x_j) = 0$$

<u>Example:</u> Two separate sensor measurements of Earth counts - subject to random noise

Error Correlation Structures: Common Errors

If the errors of measured values x_i and x_j are entirely common to each other,

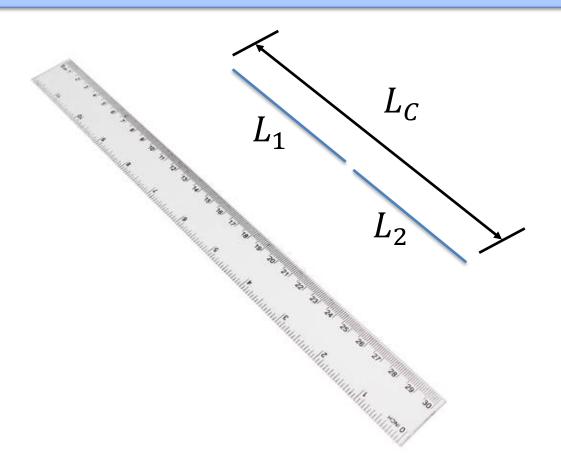
$$r_{ij}=1$$
,

so that,

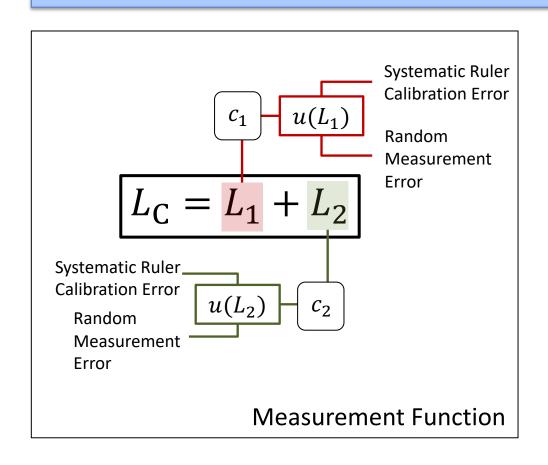
$$u(x_i, x_j) = u(x_i)u(x_j)$$

Example: Systematic error of thermometer measuring the temperature of internal blackbody calibration target

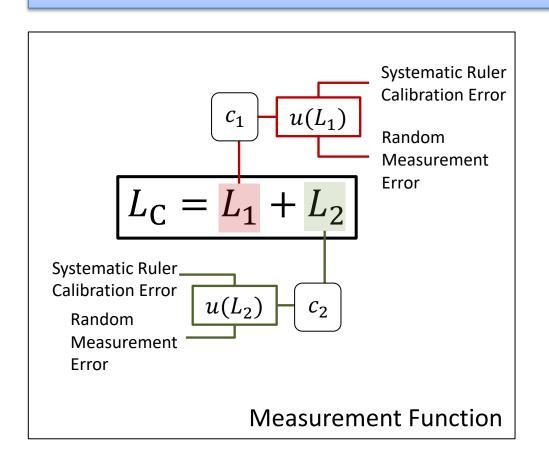
Example: Combine Two Distance Measurements



Example: Combine Two Distance Measurements



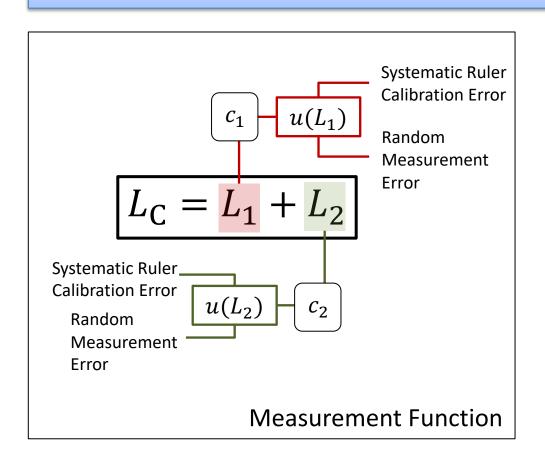
Example: Combine Two Distance Measurements



Uncertainties

- Random Error, \rightarrow uncertainty $u_{\rm R}(T_{\rm i})=0.05~{\rm cm}$
- Systematic Error, \rightarrow uncertainty $u_{\rm S}(T_{\rm i})=0.1~{\rm cm}$

Example: Combine Two Distance Measurements

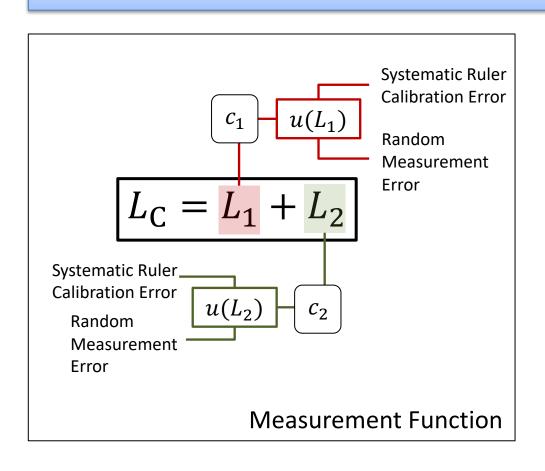


Sensitivity Coefficients

•
$$c_1 = \frac{\partial L_C}{\partial L_1} = 1$$

•
$$c_2 = \frac{\partial L_C}{\partial L_2} = 1$$

Example: Combine Two Distance Measurements



Correlation

Same ruler used so:

 Random uncertainty independent errors –

$$r_{\rm r,12} = 0$$

 Systematic uncertainty common error –

$$r_{\rm s,12} = 1$$

Example: Combine Two Distance Measurements

Evaluate uncertainty

• Due to random effect – with $r_{12} = 0$

$$u_{\rm R}^2(T_{\rm C}) = c_1^2 u_{\rm R}^2(T_1) + c_2^2 u_{\rm R}^2(T_2)$$

• Due to systematic effect – with $r_{12} = 1$

$$u_{S}^{2}(T_{C}) = c_{1}^{2}u_{S}^{2}(T_{1}) + c_{2}^{2}u_{S}^{2}(T_{2}) + 2c_{1}c_{2}u_{S}(T_{1})u_{S}(T_{2})$$

Example: Combine Two Distance Measurements

Evaluate uncertainty

Since
$$c_1 = c_2 = 1$$
, combined,

$$u^{2}(T_{C}) = u_{R}^{2}(T_{1}) + u_{R}^{2}(T_{2}) + u_{S}^{2}(T_{1}) + u_{S}^{2}(T_{2}) + 2u_{S}(T_{1})u_{S}(T_{2})$$

Example: Combine Two Distance Measurements

Evaluate uncertainty

Evaluate,

$$u(T_{\rm C}) = \sqrt{0.05^2 + 0.05^2 + 0.1^2 + 0.1^2 + 2 \cdot 0.1 \cdot 0.1} \approx 0.21 \text{ cm}$$

Example: Add Two Thermometer Measurements

Evaluate uncertainty

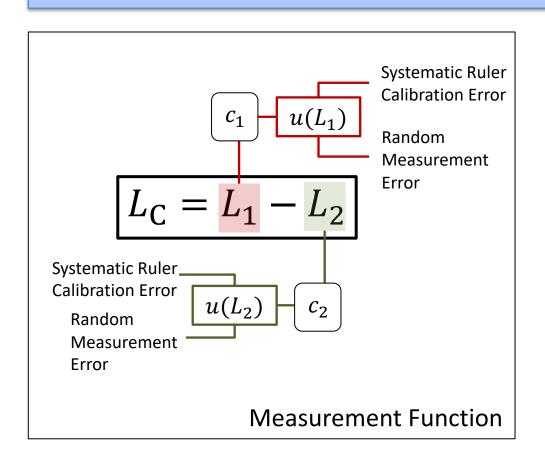
Evaluate,

$$u(T_{\rm C}) = \sqrt{0.05^2 + 0.05^2 + 0.1^2 + 0.1^2 + 2 \cdot 0.1 \cdot 0.1} \approx 0.21 \text{ cm}$$

What if I missed out covariance?

$$u(T_{\rm C}) = \sqrt{0.05^2 + 0.05^2 + 0.1^2 + 0.1^2} \approx 0.16 \,\mathrm{cm}$$
!

Example: Subtract Two Distance Measurements



Sensitivity Coefficients

•
$$c_1 = \frac{\partial L_C}{\partial L_1} = 1$$

•
$$c_2 = \frac{\partial L_C}{\partial L_2} = -1$$

Example: Subtract Two Distance Measurements

Evaluate uncertainty

Combined uncertainty,

$$u^{2}(T_{C}) = u_{R}^{2}(T_{1}) + u_{R}^{2}(T_{2}) + u_{S}^{2}(T_{1}) + u_{S}^{2}(T_{2}) - 2u_{S}(T_{1})u_{S}(T_{2})$$

Example: Add Two Thermometer Measurements

Evaluate uncertainty

Evaluate,

$$u(T_{\rm C}) = \sqrt{0.05^2 + 0.05^2 + 0.1^2 + 0.1^2 - 2 \cdot 0.1 \cdot 0.1} \approx 0.07 \text{ cm}$$

Without covariance

$$u(T_{\rm C}) = \sqrt{0.05^2 + 0.05^2 + 0.1^2 + 0.1^2} \approx 0.16 \text{ cm}$$

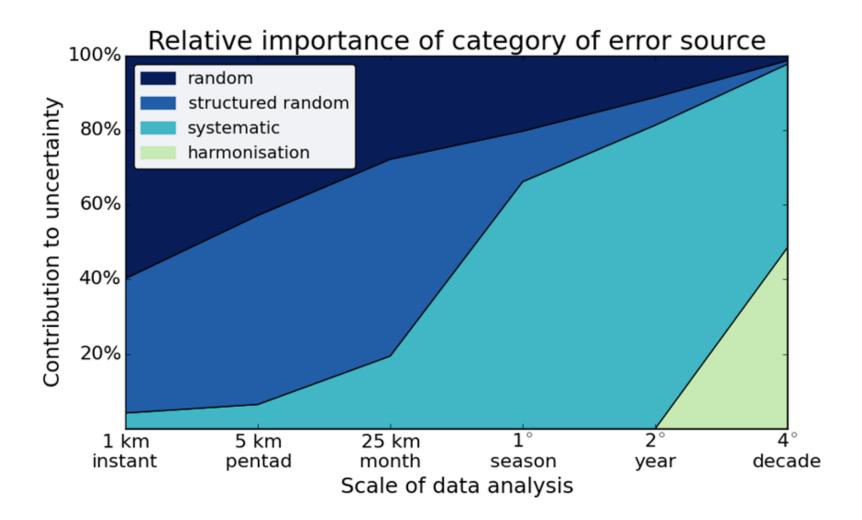
Error Correlation Structures: Structured Correlation

Intermediate forms of error correlation also important.

Very common in Earth Observation datasets with functional forms across different scales, i.e. between pixels:

- On a scanline
- Between scanlines
- Between orbit to orbit
- Over the lifetime of a mission
- Between spectral channels

Error Correlation Structures: Why do we care?



Averaged Measurements	"Raw" Measurements

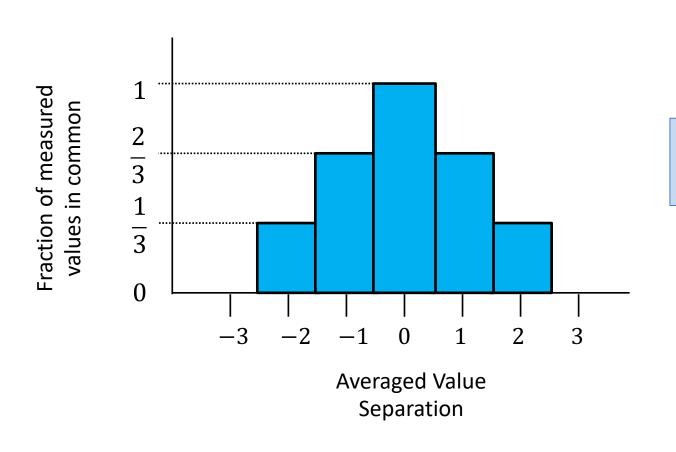
Averaged Measurements	"Raw" Measurements	

Averaged Measurements	"Raw" Measurements	

Structured Random Error Correlation

Averaged Measurements	"Raw" Measurements

Example: Error Correlation between Averaged Measurement Series



Fduceo Term

Triangle Relative Correlation

Error Correlation Structures – FIDUCEO Definitions

- Rectangle Absolute
 - Fully systematic or systematic within a calibration period
- Triangle Relative
 - Rolling averages
- Bell-shaped Relative
 - Weighted rolling averages, splines, smoothing, other
- Repeating
 - E.g. once per orbit, diurnal or seasonal cycles
- Mixed

Error Correlation Structures – Reporting

Channel names

Functional form

Value, equation or

measurand to term

parameterisation of sensitivity of

Units

Table descriptor		Comments	Example
Name of effect		A unique name	Internal calibration target count noise
Affected term in me	easurement function	Name and standard symbol	
Instruments in the	series affected	Identifier	All instruments all satellites
Correlation type and form	Pixel-to-pixel [pixels]	One of the types	Rectangular absolute
	from scanline to scanline [scanlines]		Triangular relative
	between images [images]		N/A for orbiting satellite
	Between orbits [orbit]		Random
	Over time [time]		Random
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type	[-∞,∞] (fully correlated across scan)
	from scanline to scanline		n = 51 (51 scanlines averaged in

[scanlines]

[images]

PDF shape

magnitude

units

Channels/bands

Sensitivity coefficient

Uncertainty

between images

Over time [time]

Between orbits [orbit]

List of channels / bands affected

Error correlation coefficient matrix A matrix

alibration target count

rolling average)

All channels

Gaussian

Counts

0

N/A for orbiting satellite

Identity matrix (diagonal).

Given once per orbit file

Summarising

- Error covariance: joint variability of two quantities due to common errors
- Error correlation can increase or decrease overall uncertainty (depending whether common errors cancel out)
- Structured random effects create error correlations that FIDUCEO categories into correlation forms
- FIDUCEO uses an effects table to consider correlation structures and provide uncertainty information

