

FIDUCEO has received funding from the European Union's Horizon 2020 Programme for Research and Innovation, under Grant Agreement no. 638822

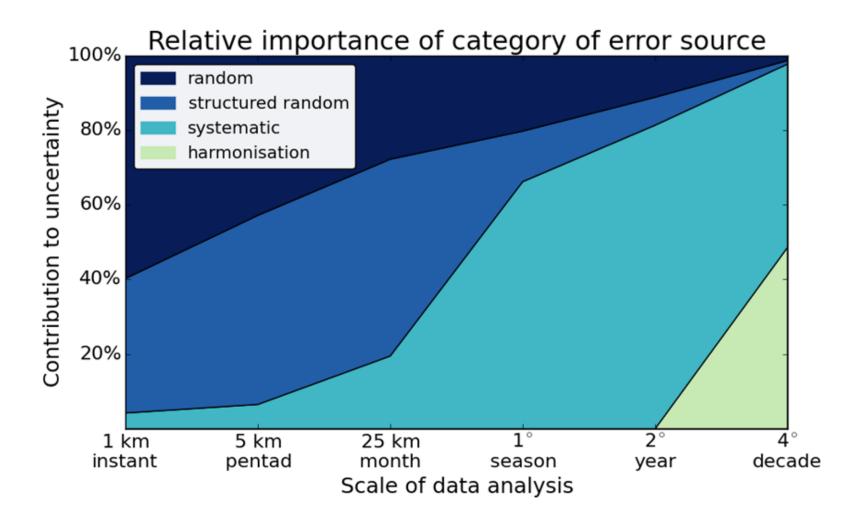
FIDUCEO workshop Lisbon 17-19th April 2018

Uncertainty Concepts 4:

Structured Errors & Uncertainty Propagation

rayference 🙏

Error Correlation Structures – Why do we care?



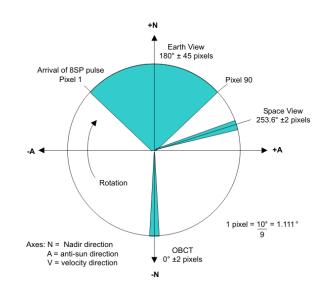
Recap: Propagation of Uncertainties

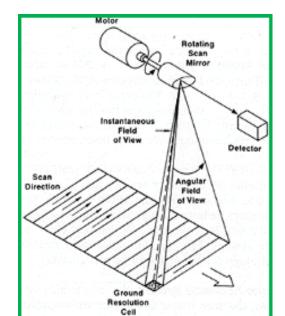
$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)$$

- $u_c^2(y)$ Combined uncertainty of measurand
- $u^2(x_i)$ Uncertainty of each input quantity
- c_i Sensitivity of the measurand to the input quantity
- $u(x_i, x_j)$ Covariance of input quantities x_i and x_j where,

Error Correlation Structures – what dimensions?

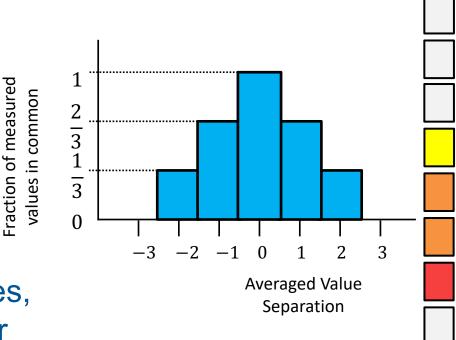
- Spatial/temporal
 - On a scanline
 - In different scanlines
 - From orbit to orbit
 - Over the lifetime of a mission
- Spectral
 - Spectral channels / bands





Error Correlation Structures – FIDUCEO Definitions

- Rectangle Absolute
 - Fully systematic or systematic within a calibration period
- Triangle Relative
 - Rolling averages
- Bell-shaped Relative
 - Weighted rolling averages, splines, smoothing, other
- Repeating
 - E.g. once per orbit, diurnal or seasonal cycles
- Mixed



Error Correlation Structures – Reporting

Table descriptor		Comments	Example
Name of effect		A unique name	Internal calibration target count noise
Affected term in measurement function		Name and standard symbol	
Instruments in the series affected		Identifier	All instruments all satellites
Correlation type and form	Pixel-to-pixel [pixels]	One of the types	Rectangular absolute
	from scanline to scanline [scanlines]		Triangular relative
	between images [images]		N/A for orbiting satellite
	Between orbits [orbit]		Random
	Over time [time]		Random
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type	[-∞,∞] (fully correlated across scan)
	from scanline to scanline		n = 51 (51 scanlines averaged in

[scanlines]

[images]

Channels/bands

Sensitivity coefficient

Uncertainty

between images

Over time [time]

PDF shape

magnitude

units

Between orbits [orbit]

List of channels / bands affected

Error correlation coefficient matrix A matrix

Channel names

Functional form

Value, equation or

measurand to term

parameterisation of sensitivity of

Units

alibration target count

rolling average)

All channels

Gaussian

Counts

0

N/A for orbiting satellite

Identity matrix (diagonal).

Given once per orbit file

Covariance Matrices – How they Simplify your Life!

$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)$$

Simplifies to,

$$u_c^2(y) = \boldsymbol{C}_y \boldsymbol{V}_x \boldsymbol{C}_y^{\mathrm{T}}$$

For a single output quantity

Covariance Matrices – How they Simplify your Life!

$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} u(x_i, x_j)$$

Simplifies to,

$$u_c^2(y) = \mathbf{C}_y \mathbf{V}_x \mathbf{C}_y^{\mathrm{T}}$$

• C_{v} - Sensitivity coefficients For a single output quantity

Covariance Matrices – How they Simplify your Life!

$$u_c^2(y) = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u^2(x_i) + 2 \sum_{i=1}^{n-1} \sum_{i=i+1}^n \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_i} u(x_i, x_j)$$

Simplifies to,

$$u_c^2(y) = C_y V_x C_y^{\mathrm{T}}$$

- C_y Sensitivity coefficients For a single output quantity
- V_x Covariance Matrix

Covariance Matrices – Closer Look

$$u_c^2(y) = C_y V_x C_y^{\mathrm{T}}$$
 (One output quantity)

• C_{v} - Sensitivity coefficients

$$C_y = \left(\frac{\partial f}{\partial x_1} \quad \frac{\partial f}{\partial x_2} \quad \cdots \quad \frac{\partial f}{\partial x_n}\right)^{\mathrm{T}}$$

• V_x - Covariance Matrix

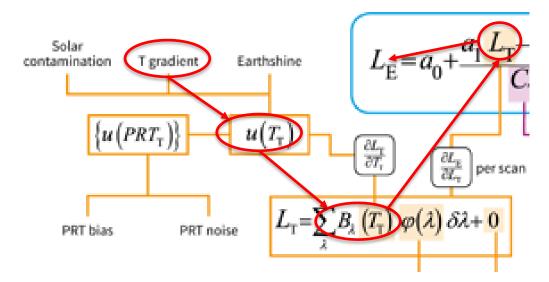
For a single output quantity

$$V_{x} = \begin{pmatrix} u^{2}(x_{1}) & u(x_{1}, x_{2}) & \cdots & u(x_{1}, x_{n}) \\ u(x_{2}, x_{1}) & u^{2}(x_{2}) & \cdots & u(x_{2}, x_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ u(x_{n}, x_{1}) & u(x_{n}, x_{2}) & \cdots & u^{2}(x_{n}) \end{pmatrix}$$



Source uncertainties - example

- Calibration Target temperature
 - Structured uncertainty component
 - Arises from errors in mapping estimates of calibration target temperature to calibration target radiances
 - Propagates through Planck function/spectral response function convolution to an uncertainty on the ICT radiance to a Gain uncertainty to the final Earth radiance
 - Uses the sensitivity coefficients to propagate uncertainties to the measurand



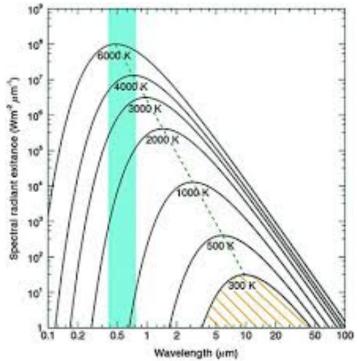
Introducing CURU^TC^T

What is the covariance between the Earth radiance values in different spectral channels due to the uncertainty associated with the common effect in the internal calibration target temperature?

Introducing CURU^TC^T

$$\tilde{L}_{\text{ICWT,A}} = \frac{\mathcal{E}_{\text{A}} c_{\text{1,}L}}{\lambda_{\text{A}}^{5} \left(\exp \left[c_{2} / \lambda_{\text{A}} T \right] - 1 \right)}$$

$$\tilde{L}_{\text{ICWT,B}} = \frac{\varepsilon_{\text{B}} c_{1,L}}{\lambda_{\text{B}}^{5} \left(\exp \left[c_{2} / \lambda_{\text{B}} T \right] - 1 \right)}$$



An error in the temperature of the internal calibration target will affect all channels. But not equally

Introducing CURU^TC^T

$$V_{LE,T} = \begin{pmatrix} c_{LA,T} & 0 & 0 \\ 0 & c_{LB,T} & 0 \\ 0 & 0 & c_{LC,T} \end{pmatrix} \begin{pmatrix} u_T & 0 & 0 \\ 0 & u_T & 0 \\ 0 & 0 & u_T \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} u_T & 0 & 0 \\ 0 & u_T & 0 \\ 0 & 0 & u_T \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} c_{LA,T} & 0 & 0 \\ 0 & c_{LB,T} & 0 \\ 0 & 0 & c_{LC,T} \end{pmatrix}^{\mathsf{T}}$$

Covariance

Covariance matrix
for Earth
Radiances in
different channels
due to common
temperature error

Full correlation

Temperature uncertainty in K
The same throughout by definition

u(T)

$$c_{LA,T} = \frac{\partial L_{E,A}}{\partial L_{ICT,A}} \frac{\partial L_{ICT,A}}{\partial T}$$
 Sensitivity coefficient to

Sensitivity coefficient to convert from temperature to Earth radiance uncertainty

More CURUTCT

Covariance matrix for Earth Radiances in different channels due to errors in Earth Counts

$$V_{LE,CE} = \begin{bmatrix} c_{LA,CE} & 0 & 0 & 0 \\ 0 & c_{LA,CE} & 0 & 0 \\ 0 & 0 & c_{LA,CE} \end{bmatrix} \begin{pmatrix} u_{CA} & 0 & 0 \\ 0 & u_{CB} & 0 \\ 0 & 0 & u_{CC} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_{CA} & 0 & 0 \\ 0 & u_{CB} & 0 \\ 0 & 0 & u_{CC} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} c_{LA,CE} & 0 & 0 \\ 0 & c_{LA,CE} & 0 \\ 0 & 0 & c_{LA,CE} \end{pmatrix}^{\mathrm{T}}$$

$$c_{LA,T} = \frac{\partial L_{E,A}}{\partial C_{E,A}}$$
Sensitivity coefficient to convert from Earth counts

Earth Count uncertainty Likely to change from channel to channel

$$\begin{pmatrix} 0 \\ 0 \\ u_{CC} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} c_{L\mathrm{A,CE}} & 0 & 0 \\ 0 & c_{L\mathrm{A,CE}} & 0 \\ 0 & 0 & c_{L\mathrm{A,CE}} \end{pmatrix}^{\mathrm{T}}$$
 $c_{L\mathrm{A,T}} = \frac{\partial L_{\mathrm{E,A}}}{\partial C_{\mathrm{E,A}}}$

Sensitivity coefficient to convert from Earth counts to Earth radiance uncertainty

Bringing CURU^TC^T together

What is the covariance between the Earth radiance values in different spectral channels due to the uncertainty associated with the common effect in the internal calibration target temperature and the uncertainty associated with the independent effect Earth Counts?

$$\boldsymbol{V}_{LE} = \sum_{\text{Effects, } i} \boldsymbol{C}_{i} \boldsymbol{U}_{i} \boldsymbol{R}_{i} \boldsymbol{U}_{i}^{T} \boldsymbol{C}_{i}^{T}$$

$$\boldsymbol{V}_{LE} = \boldsymbol{C}_{C_E} \boldsymbol{U}_{C_E} \boldsymbol{R}_{C_E} \boldsymbol{U}_{C_E}^{\mathrm{T}} \boldsymbol{C}_{C_E}^{\mathrm{T}} + \boldsymbol{C}_T \boldsymbol{U}_T \boldsymbol{R}_T \boldsymbol{U}_T^{\mathrm{T}} \boldsymbol{C}_T^{\mathrm{T}}$$

Covariance Matrices SRF example

Example: Propagating model error covariance onto a curve

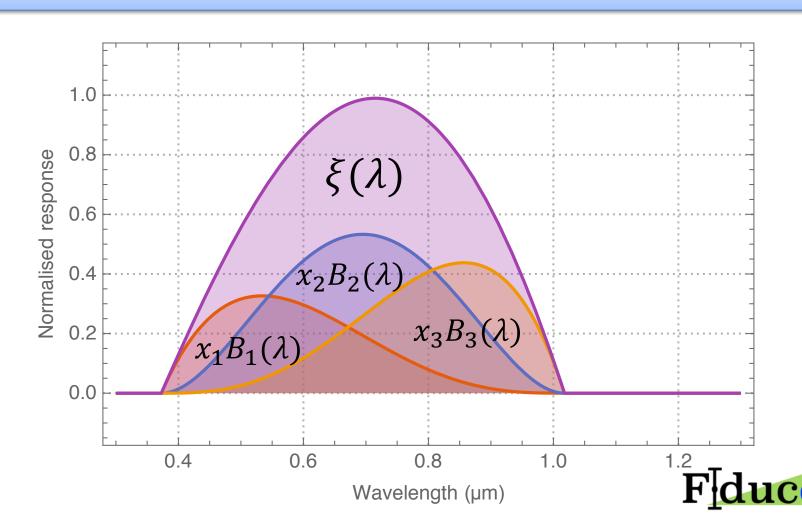
Spectral response model of the Meteosat visible broadband channel

$$\xi(\lambda) = f(\lambda, x_1, \dots, x_n)$$

Response model parameters x_1, \dots, x_n have error covariance matrix V_x

Covariance Matrices Example III

Example: Propagating model error covariance onto a curve



Covariance Matrices Example III

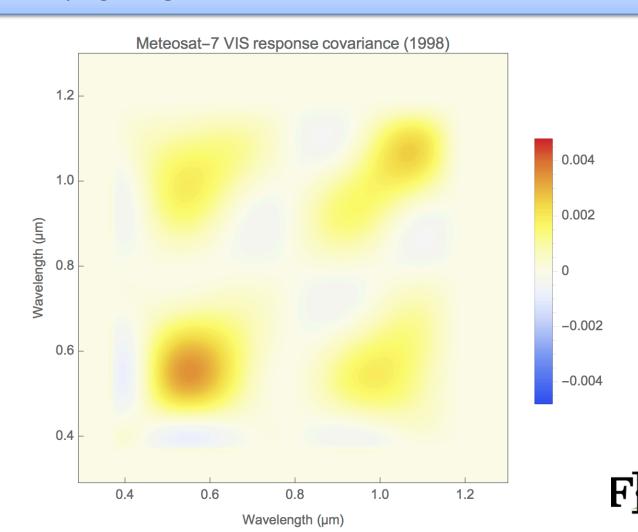
Example: Propagating model error covariance

What is the error covariance of the curve $\xi(\lambda)$?

$$V_{\xi}(\lambda)$$
 = $C_f(\lambda)$ \times V_{χ} \times $C_f^{\mathrm{T}}(\lambda)$

Covariance Matrices Example III

Example: Propagating model error covariance



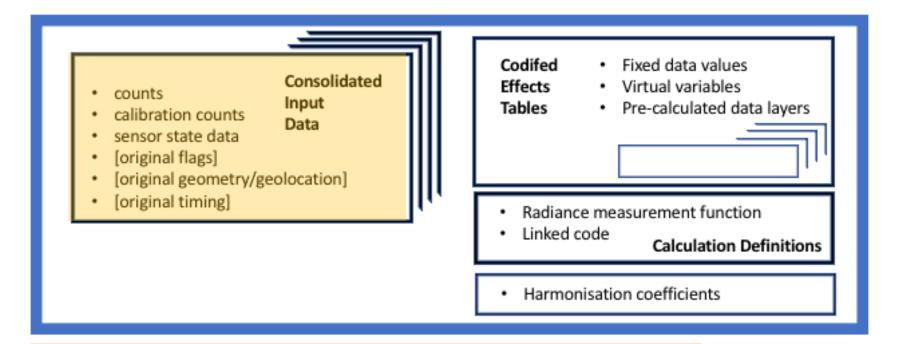
Summary

- Error correlation structures (spatial and spectral) at the FCDR need to be understood to propagate to CDRs
- Propagation can be done with matrices using $CURU^{T}C^{T}$

CDR Full & Easy

Description of Scientific Content of FIDUCEO FCDRs

21/02/2018 10:56:00 version 1.a



- [improved] geometry
- [improved] geolocation
- [improved] timing
- summary input flags

- harmonised radiances
- uncertainty information
 - uncertainty magnitude
 - spatio-temporal length scales
- cross-channel correlation

new flags

Full FCDR

easyFCDR

easy-FCDR

Data