

Using Remote Sensing data from satellites and fieldwork to inform NFM

Dr. Will Maslanka

Presentation Outline

- Place in the LANDWISE Project
- Introduce Soil Moisture Remote Sensing Methods
- Satellite Observations
- Fieldwork Observations

Landwise Project Structure

Remote Sensing - Radar

WP3 uses RADAR as it's primary remote sensing method

- RADAR echo (or backscatter) is a measure of returned signal.
 - Can be used to obtain information about an object.
 - In LANDWISE case, this is soil moisture.
- Other reasons for using RADAR:
 - Not affected by weather (clouds).
 - Not affected by illumination (day/night).

Radar derived Soil Moisture

- Water in the soil affects the dielectric constant of the soil
 - Dielectric constant strongly influences the intensity of the Radar backscatter coefficient, σ° .
- By measuring σ° over a time period, we can estimate **relative soil moisture**, if we have a "wet" and "dry" reference σ° .
 - Taken by finding largest and smallest σ° values in the time series.
- By measuring σ° AND surface roughness for a single observation, we can estimate **absolute soil moisture**.
 - Using Radar Backscatter Models.

LANDWISE Satellite use

- Sentinel 1 Constellation
 - Two satellites, launched in 2014 (1A) and 2016 (1B).
 - Strict 6 day repeat cycle, 175 orbits per cycle.
 - Dependable viewing geometry and spatial coverage.
 - Frequency: 5.405 GHz
 - Resolution: 20 x 22 m.

Satellite Observations

Cause of increased backscatter

- Increase in backscatter coefficient caused by increase in soil moisture (from rainfall)
 - June/July 2018 very dry (Second driest for Thames region since 1910).
 - Intense thunderstorms and front across the UK on 27th July.
 - Lyneham WS (~15km from Swindon) registering ~20 mm over two days.

MoD Lyneham : 05.06.2018 - 31.07.2018 © weatheronline.co.uk

Satellite Derived SM

Satellite Derived SM

Detailed Field Survey

- Links with WP2
 - Providing information for hydrological model parameterization (WP4)
- Aim to better characterise field scale heterogeneity for different practices and soil parameters.
 - Take Soil Moisture observations via "ground-based" RADAR units.
 - Linked with detailed field survey
 - Hand held soil moisture probes
 - Soil parameters

Field Obs - Rig

- Rig-mounted RADAR observations
- Transects across fields
 - Able to make high resolution observations across fields
- Georeferenced for repeatability
- Estimates ~3 min per scan
 - ~10 min per observation
 - ~50 observations per day

Field Obs -Drone

- Drone-mounted RADAR observations
- Aim to fly the drone in a predetermined pattern
 - Snapshot every millisecond
 - Allows for repeated observations
- Completely non-destructive sampling

Fieldwork Observations

- Assess how different types of land/soil properties effect soil moisture
 - Till vs No Till?
 - Herbal Ley vs Rye Grass?
 - Trafficked vs non-trafficked areas
- Coincide with Sentinel 1 passes
 - Look to scale up field scale RADAR observations to compare with catchment scale RADAR observations.

Summary Slide

- Introduced to WP3 work done
- Discussed how RADAR works with respect to soil moisture
- Showed Satellite remote sensing data from Upper Thames
- Introduced remote sensing methodology for fieldwork

Any Questions?

False Colour σ° of Cotswold's Water Park @ Cricklade