An overview of the hydrological models used in LANDWISE for the simulation of the effects of landbased NFM measures

ANDWISE

Anne Verhoef¹, Hèou Maléki Badjana¹, Sarah Collins², Ryan Jennings³, Steve Rose³, Majdi Mansour², David Macdonald², Hannah L. Cloke¹

¹Department of Geography and Environmental Science, University of Reading, Reading, UK

²British Geological Survey, Edinburgh, Keyworth, Wallingford offices, UK

³JBA Consulting, Skipton, UK

Aims of land-based NFM and hydrological processes involved

Land-(management) based NFM measures aim to:

- ☐ **Retain water** in the soil/landscape ☐ Soil water retention by managing infiltration and runoff
 - ☐ Soil management by improving storage and percolation
 - ☐ Crop choice & rotation, to increase root water uptake
 - ☐ Woodlands: see above, and increased interception

Field & Farm-level scale

Land-scape scale

- Make space for above-ground water storage & attenuation
 - Water storage areas on land surface
 - ☐ Riparian buffers
 - ☐ River and floodplain restoration

Models can help us assess:

- ☐ The effectiveness of different measures
- ☐ How the effectiveness <u>varies</u> seasonally and between years (antecedent conditions, precipitation magnitude and duration)

Model processes

Models, scales, processes, NFM

Scale	Modelling platform	Hydrological processes	NFM measures considered
Field scale (<10ha) Translatable to other areas with similar soils, landscape, land management, climate	Land surface model - SWAP	Rainfall, interception, evaporation & transpiration, soil storage, runoff, infiltration, recharge	Soil water retention, Soil management, Crop choice & rotation, Woodlands
Small-medium catchment (c1,000km²) Provides context for various catchment types	Land surface models – SWAT, ZOODRM	Rainfall, interception, evaporation & transpiration, runoff, infiltration, recharge	SWAT: Soil water retention, Soil management, Crop choice, Woodlands; ZOODRM: Soil water retention, Woodlands
	Surface water model – JFlow	Rainfall, runoff, losses (soil storage), return flow/baseflow	Water storage areas, Riparian buffers, River and floodplain restoration

Approach for large catchment (>1,000km²) scale currently under discussion

Kind of model input data required

- ☐ Soil water retention & flow properties (NATMAP or HOST soil classes, farmer info WP1)
- □ Dates of sowing/planting & harvest; max. root depths (farmer info)
- ☐ Leaf Area Index (LAI), e.g. to determine interception/ transpiration
- ☐ Surface 'roughness' for runoff, e.g. via curve number method

NFM simulated via:

- ☐ Multi-year 1-D (field-scale) model simulation runs using multiple 'scenarios' (grassland, crop rotation or typical woodland species)
- ☐ Small-medium catchmentscale simulation runs with more restricted scenarios
- ☐ Models driven with weather data representing short, intense summer storms; prolonged winter
 - storms, lower magnitude events & climate change

Key differences between models:

- ☐ Type of soil information required (full shape of water retention curve; SWAP) or key points only (field capacity and wilting point; ZOODRM, SWAT)
- ☐ How <u>run-off</u> is modelled (e.g. via curve number (SWAT) or Manningtype equations (SWAP), or various options (Jflow))
- ☐ <u>Interception of rainwater</u> by vegetation (e.g. option to differentiate between crops/grass & forest; strength of dependency on LAI)
- ☐ Static LAI (ZOODRM); or crop & forest growth, that depends on weather (SWAP, SWAT)
- ☐ Plant water stress (FAO p-factor in ZOODRM or mechanistic approaches in SWAT & SWAP) for transpiration

Contact Details

Acknowledgements

E-mail: a.verhoef@reading.ac.uk

The work has been funded by NERC through the LANDWISE project (NE/R004668/1)