An overview of the hydrological models used in LANDWISE for the simulation of the effects of landbased NFM measures **ANDWISE** Anne Verhoef¹, Hèou Maléki Badjana¹, Sarah Collins², Ryan Jennings³, Steve Rose³, Majdi Mansour², David Macdonald², Hannah L. Cloke¹ ¹Department of Geography and Environmental Science, University of Reading, Reading, UK ²British Geological Survey, Edinburgh, Keyworth, Wallingford offices, UK ³JBA Consulting, Skipton, UK # Aims of land-based NFM and hydrological processes involved Land-(management) based NFM measures aim to: - ☐ **Retain water** in the soil/landscape ☐ Soil water retention by managing infiltration and runoff - ☐ Soil management by improving storage and percolation - ☐ Crop choice & rotation, to increase root water uptake - ☐ Woodlands: see above, and increased interception #### Field & Farm-level scale # Land-scape scale - Make space for above-ground water storage & attenuation - Water storage areas on land surface - ☐ Riparian buffers - ☐ River and floodplain restoration #### Models can help us assess: - ☐ The effectiveness of different measures - ☐ How the effectiveness <u>varies</u> seasonally and between years (antecedent conditions, precipitation magnitude and duration) #### **Model processes** ### Models, scales, processes, NFM | Scale | Modelling platform | Hydrological processes | NFM measures considered | |---|---------------------------------------|---|--| | Field scale (<10ha) Translatable to other areas with similar soils, landscape, land management, climate | Land surface model -
SWAP | Rainfall, interception,
evaporation &
transpiration, soil storage,
runoff, infiltration,
recharge | Soil water retention, Soil
management, Crop choice
& rotation, Woodlands | | Small-medium catchment (c1,000km²) Provides context for various catchment types | Land surface models –
SWAT, ZOODRM | Rainfall, interception,
evaporation &
transpiration, runoff,
infiltration, recharge | SWAT: Soil water retention,
Soil management, Crop
choice, Woodlands;
ZOODRM: Soil water
retention, Woodlands | | | Surface water model –
JFlow | Rainfall, runoff, losses (soil
storage), return
flow/baseflow | Water storage areas,
Riparian buffers, River and
floodplain restoration | Approach for large catchment (>1,000km²) scale currently under discussion # Kind of model input data required - ☐ Soil water retention & flow properties (NATMAP or HOST soil classes, farmer info WP1) - □ Dates of sowing/planting & harvest; max. root depths (farmer info) - ☐ Leaf Area Index (LAI), e.g. to determine interception/ transpiration - ☐ Surface 'roughness' for runoff, e.g. via curve number method ### NFM simulated via: - ☐ Multi-year 1-D (field-scale) model simulation runs using multiple 'scenarios' (grassland, crop rotation or typical woodland species) - ☐ Small-medium catchmentscale simulation runs with more restricted scenarios - ☐ Models driven with weather data representing short, intense summer storms; prolonged winter - storms, lower magnitude events & climate change # **Key differences between models:** - ☐ Type of soil information required (full shape of water retention curve; SWAP) or key points only (field capacity and wilting point; ZOODRM, SWAT) - ☐ How <u>run-off</u> is modelled (e.g. via curve number (SWAT) or Manningtype equations (SWAP), or various options (Jflow)) - ☐ <u>Interception of rainwater</u> by vegetation (e.g. option to differentiate between crops/grass & forest; strength of dependency on LAI) - ☐ Static LAI (ZOODRM); or crop & forest growth, that depends on weather (SWAP, SWAT) - ☐ Plant water stress (FAO p-factor in ZOODRM or mechanistic approaches in SWAT & SWAP) for transpiration **Contact Details** **Acknowledgements** E-mail: a.verhoef@reading.ac.uk The work has been funded by NERC through the LANDWISE project (NE/R004668/1)