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Instructions

All code and links can be found on the Github repository.

In part 1 of the practical, we will use streamlit to look at the role of the error covariances in a
simple 1D system.

In part 2 we will use Jupyter notebooks to look at the DA ingredients needed to assimilate data
into the toy Lorenz 96 model.
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Optimal interpolation
demonstration

Introduction

In this interactive demo, we perform data assimilation in order to estimate the values of a function over
the interval [0,10]. A simple data assimilation scheme, called optimal interpolation, is used. This computes
an updated estimated of the state given a first guess (the background), Xp, observations, y, and the
mapping from the state variables to those observed, h()

x, = x5 + K(y — h(x)).

K controls the weighting given to the observations versus the background and is a function of the error
covariance matrices for the background, B, and the observations, R, as well as the Jacobian of the

observation operator, H.
K =BH'(HBH® + R) ..
The exercises explore two ideas:
1. the effect of the uncertainty in the observations and background on the analysis.

2. how the information from observations is spread to the unobserved variables.

Instructions

Use the selection boxes and sliders in the left-hand control panel to adjust parameter values. The plot will
automatically update, although you might have to wait a few seconds after changing a parameter value.
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Over the next few days we will be exploring the use of different DA algorithms for estimating and forecasting the state of a system. To enable this, in
today's practical we will begin by setting up an idealised system in which the true underlying dynamics are described by the Lorenz 96 model. From the
true dynamics we will then generate a background and observations consistent with their assumed error chareteristics. This approach is known as identical
twin experiments and allows us to fully evaluate the success of different DA algorithms.

First of all we need to import the functions needed.

import numpy as np

from tools.L96_model import lorenz96

from tools.obs import createH, gen_obs

from tools.cov import getBcanadian

from tools.plots import plotL96, plotL96obs, plotL96_Linerr, plotH, tileplotB
from tools.diag import compute_lin_error

The Lorenz 96 model

The Lorenz 96 model describes the simplified evolution of a univariate large-scale atmospheric system on a one dimensional circle of latitude; simulating
external forcing, internal dissipation and advection. It is given by the following equations
dx;
dt
where X; is the state variable at position i, and F is a forcing term.

= (Xip1 = Xj2)Xj-1 —x; + F fori=1,2,...,n

Running the next section of code will produce a Hovmoller plot of the Lorenz 96 model when n = 12 and F = 8. What structures are identifiable within
this plot?

n =12 # No. of state variables (No. of nodes in Lorenz-96)

F = 8.0 # Forcing F>5.0 guarantees chaos

deltat = 0.025 # Model timestep, 0.025 equivalent to approxiamately 3 hours
tf = 5.0 # The final time of the simulation



Streamlit: Optimal interpolation demonstration

The effect of the uncertainty in the observations and background on
the analysis

1.0 A

0.5 4

0.0

_0.5 -

—1.0 A

-
L. = ~-
~
~
s
-
-~
~

—=- Analysis
— Background
® Observations

-
~
S ~o -
~ -
-~ -
-~ -
~ -
S~ -
gy

10

Parameters:
Observation error standard deviation 0.1
Background error standard deviation 0.1



Streamlit: Optimal interpolation demonstration

The effect of the uncertainty in the observations and background on
the analysis
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Parameters:
Observation error standard deviation 0.2
Background error standard deviation 0.1

Increasing the observation error standard
deviation reduces the analysis fit to the
observations



Streamlit: Optimal interpolation demonstration

The effect of the uncertainty in the observations and background on
the analysis
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Streamlit: Optimal interpolation demonstration

The effect of the uncertainty in the observations and background on
the analysis
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Parameters:
Observation error standard deviation 0.2
Background error standard deviation 0.2

It is the ratio of the observation to background
error standard deviation that is important



Streamlit: Optimal interpolation demonstration

The effect of the uncertainty in the observations and background on
the analysis

1.0 A

0.5 4

0.0

_0.5 -

—1.0 A

———
- ~
L. = ~-
~
~
-~
=~
-
-~
~

—=- Analysis
— Background
® Observations

-
~
S~o -]
~ -
-~ -
~ -
~ -
S~ -
.

Parameters:
Observation error standard deviation 0.1
Background error standard deviation 0.1

It is the ratio of the observation to background
error standard deviation that is important



Streamlit: Optimal interpolation demonstration

How the information from observations is spread to the unobserved
variables: the role of the background error correlations
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Observation error standard deviation 0.1
Background error standard deviation 0.1
Background error correlation length scale 1
Observation error correlation length scale 0



Streamlit: Optimal interpolation demonstration

How the information from observations is spread to the unobserved
variables: the role of the background error correlations
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Streamlit: Optimal interpolation demonstration

How the information from observations is spread to the unobserved
variables: the role of the background error correlations
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Parameters:

Observation error standard deviation 0.1
Background error standard deviation 0.1
Background error correlation length scale 2
Observation error correlation length scale 0

Increasing the background error correlation
length scale increases the spread of
information from the observations.
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How the information from observations is spread to the unobserved
variables: the role of the observation error correlations
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Streamlit: Optimal interpolation demonstration

How the information from observations is spread to the unobserved
variables: the role of the observation error correlations
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Parameters:

Observation error standard deviation 0.1
Background error standard deviation 0.1
Background error correlation length scale 1
Observation error correlation length scale 5

Increasing the observation error correlation
length scale allows the observations to
provide more information about gradients.



Streamlit: Optimal interpolation demonstration

True Atmosphere
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Figure 1. (2) A microwave satellite image of Hurricane Sandy on 24 October 2012, which is treated as truth. (b) Panel (a) plus white (uncorrelated) noise; (c) panel I8 10

(a) plus red (spatially correlated) noise. (d)—(f) Detail views of (a)—(c), respectively. The colour scale for all panels is brightness temperature in Kelvin. This figure is
for illustrative purposes.



Lorenz 96 model

Hovmoller diagram: Lorenz 96 system
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F=8 is the chaotic regime.
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Lorenz 96 model — error in linear assumption

Many DA algorithms assume that the propagating model is near linear. \ \/

This is related to the Gaussian assumption.

The linearization error can be quantified as
linerror(t) = ||NL(x + Ax,t) — NL(x,t) — TLAX, ||

—— ||INL(x+Dx)-NL(x)||

IITL)] 035 1 The linearization depends on the magnitude of the perturbation,
0.30 - Ax, and the length of the simulation.

The size of the perturbation is related to the size of the corrections
we want to make during the DA process.

0201 The linearization error should be used to guide how frequently the
0.15 assimilation should be performed.
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variable number

Lorenz 96 — B matrix

We generate an approximate B matrix using the Canadian Quick method
e = (x(t + T) — x(1))/1/(2)

matrix

0
1-

3
2..
34 2
4 - -1
5.

- 0
6-
7. -1
=1 -2
9_
10 -3
11

o 1 2 3 4 5 6 7 8 9 10 11

variable number

Sample size =10000

The structure in the B matrix can be
compared back to the Hovmoller plot.

Hovmoller diagram: Lorenz 96 system




variable number

Lorenz 96 — B matrix

We generate an approximate B matrix using the Canadian Quick method
e = (x(t + T) — x(1))/1/(2)
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Reducing the sample size to 200
results in noisy unphysical correlations
that will affect how the information in
the observations is used.



Lorenz 96 — generating observations

We generate observations consistent with the observation error standard deviations and

observation operator

Observation operator, H
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Which is better observing every
grid point with a large error
standard deviation or observing
every other grid point with a small
error standard deviation?

We can explore this questionin
the practicals other the rest of the
week.



