Department of Meteorology Data assimilation research centre (DARC)

Data assimilation software

Yumeng Chen yumeng.chen@reading.ac.uk

Copyright University of Reading

When do we want to write our own code?

- Not very complicated algorithms
- Learning details of an algorithm
- Sense of control
- Easier modifications
- Tailored to our own applications
- Fewer dependent libraries

$$\mathcal{J}(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{i=0}^{N} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x$$

Algorithm 1.2 4D-Var in its basic form
$j = 0, \mathbf{x} = \mathbf{x}_0$
while $ \nabla J > \epsilon$ or $j \le j_{\max}$
(1) compute J with the direct model M and H
(2) compute ∇J with adjoint model \mathbf{M}^{T} and \mathbf{H}^{T} (reverse mode)
gradient descent and update of \mathbf{x}_{i+1}
j = j + 1
end

Source: Data Assimilation: Methods, Algorithms, and Applications by Maëlle Nodet, Marc Bocquet, Mark Asch

- Convenience
 - Prefer np.mean to writing loops
- Optimised and efficient
- Well-maintained and reliable
- Focus on the scientific questions
- Ensures reproducible and consistent scientific research

$$\mathcal{J}(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{i=0}^{N} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x$$

Source: Data Assimilation: Methods, Algorithms, and Applications by Maëlle Nodet, Marc Bocquet, Mark Asch

One may even argue that we can build a DA system without a team using good software.

A non-exhaustive list of DA software/libraries/framework

Name	Developers	Purnose (approximately)	Name	Developers	Notes
Nume	Developers	raipose (approximately)	DAPPER	Raanes, Chen, Grudzien	Python
DART	NCAR	General	SANGOMA	Conglomerate*	Fortran, Matlab
PDAF	AWI	General	hIPPYlib	Villa, Petra, Ghattas	Python, adjoint-based PDE methods
IEDI	ICSDA (NOAA, NASA, ++)	General	FilterPy	R. Labbe	Python. Engineering oriented.
			DASoftware	Yue Li, Stanford	Matlab. Large inverse probs.
OpenDA	TU Delft	General	Pomp	U of Michigan	R
EMPIRE	Reading (Met)	General	EnKF-Matlab	Sakov	Matlab
ERT	Statoil	History matching (Petroleum DA)	EnKF-C	Sakov	C. Light-weight, off-line DA
DIDT	CIDD	Llister restabile (Datualeum DA)	pyda	Hickman	Python
PIPT	CIPR	History matching (Petroleum DA)	PyDA	Shady-Ahmed	Python
MIKE	DHI	Oceanographic	DasPy	Xujun Han	Python
OAK	Liège	Oceanographic	DataAssim.jl	Alexander-Barth	Julia
Siroco	OMP	Oceanographic	DataAssimilationBenchmarks.jl	Grudzien	Julia, Python
511000	OWIF	Oceanographic	EnsembleKalmanProcesses.jl	Clim. Modl. Alliance	Julia, EKI (optim)
Verdandi	INRIA	Biophysical DA	Datum	Raanes	Matlab
PyOSSE	Edinburgh, Reading	Earth-observation DA	IEnKS code	Bocquet	Python

Courtesy: Patrick Raanes on https://github.com/nansencenter/DAPPER/blob/master/README.md

A non-exhaustive list of DA software/libraries/framework

Name	Developers	Purpose (approximately)	
DART	NCAR	General	
PDAF	AWI	General	
JEDI	JCSDA (NOAA, NASA, ++)	General	
OpenDA	TU Delft	General	
EMPIRE	Reading (Met)	General	
ERT	Statoil	History matching (Petroleum DA)	
PIPT	CIPR	History matching (Petroleum DA)	
MIKE	DHI	Oceanographic	
OAK	Liège	Oceanographic	
Siroco	OMP	Oceanographic	
Verdandi	INRIA	Biophysical DA	
PyOSSE	Edinburgh, Reading	Earth-observation DA	

Operational use/research for large models

- UK Met Office is transitioning towards JEDI
- PDAF has been used to investigate marine ecosystem DA, Arctic sea ice DA, etc.
- DART has been used with WRF,MPAS-Atmosphere, CAM

Courtesy:

Patrick Raanes on https://github.com/nansencenter/DAPPER/blob/master/README.md

A non-exhaustive list of DA software/libraries/framework

Methodology research for small models like Lorenz 96

- We used DAPPER to test a simplified DA algorithm (a smoother algorithm)
- IEnKS code was used for idealised parameter estimation tests
- We can still learn a lot with small models

Name	Developers	Notes
DAPPER	Raanes, Chen, Grudzien	Python
SANGOMA	Conglomerate*	Fortran, Matlab
hIPPYlib	Villa, Petra, Ghattas	Python, adjoint-based PDE methods
FilterPy	R. Labbe	Python. Engineering oriented.
DASoftware	Yue Li, Stanford	Matlab. Large inverse probs.
Pomp	U of Michigan	R
EnKF-Matlab	Sakov	Matlab
EnKF-C	Sakov	C. Light-weight, off-line DA
pyda	Hickman	Python
РуДА	Shady-Ahmed	Python
DasPy	Xujun Han	Python
DataAssim.jl	Alexander-Barth	Julia
DataAssimilationBenchmarks.jl	Grudzien	Julia, Python
EnsembleKalmanProcesses.jl	Clim. Modl. Alliance	Julia, EKI (optim)
Datum	Raanes	Matlab
IEnKS code	Bocquet	Python

Data Assimilation with Python: a Package for Experimental Research (DAPPER)

- DAPPER is a set of templates for DA methods
- The typical set-up is a synthetic (twin) experiment as what we do in practicals
- Ease of adding new DA methods and models
- Pure Python implementation
- This can be used to compare different DA algorithms and applications with low-dimensional state vectors

https://github.com/nansencenter/DAPPER

Method	Literature reproduced
EnKF ¹	Sakov08, Hoteit15, Grudzien2020
EnKF-N	Bocquet12, Bocquet15
EnKS, EnRTS	Raanes2016
iEnKS / iEnKF / EnRML / ES-MDA ²	Sakov12, Bocquet12, Bocquet14
LETKF, local & serial EAKF	Bocquet11
Sqrt. model noise methods	Raanes2014
Particle filter (bootstrap) ³	Bocquet10
Optimal/implicit Particle filter ³	Bocquet10
NETF	Tödter15, Wiljes16
Rank histogram filter (RHF)	Anderson10
4D-Var	
3D-Var	
Extended KF	
Optimal interpolation	
Climatology	

Joint Effort for Data assimilation Integration (JEDI)

- Various operational centres opt for it including UKMO, NOAA, etc
- Mainly designed for numerical weather forecast
- Well-maintained software with a large community
- Modern software development workflow
- Designed with flexibility in mind
 - Many components of DA system can be configured in YAML files without the need changing JEDI code

Joint Effort for Data assimilation Integration (JEDI)

- OOPS: Object Oriented Prediction System:
 - 3D-Var; 4DEnsVar; 4DVar; Weak constraint 4DVar
 - LETKF, LGETKF
- UFO: Unified Forward Operator
 - Obs. Operator
 - Quality control and variational bias correction

- SABER: System Agnostic Background Error Representation
 - computing and working with the background error covariance matrix
- IODA: Interface for Observation Data Access
 - handle an immense amount of data from the providers

OOPS
$$\mathcal{J}(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}^b) + \frac{1}{2} \sum_{i=0}^{N} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathcal{H}_i(\mathbf{x}_i) - \mathbf{y}_i)$$
SABER UFO IODA

- Focuses on ensemble DA
- Suitable for weather and climate models,
 e.g. AWI-CM, MITgcm, MPI-ESM, NEMO,
 etc.
- Implementation is in general efficient and reliable
- Good protocols and well-documented to be used with any models and observations

	Global filter	Local filter	Smoother
	ETKF	\checkmark	\checkmark
	ESTKF	\checkmark	\checkmark
EnKF	EnKF	\checkmark	\checkmark
	SEIK	\checkmark	\checkmark
	SEEK		
Nonlinear	NETKF	\checkmark	\checkmark
filtering	Particle filter		
	3DVar		
3DVar	3DEnVar		
	Hyb3DVar		

• Flexibility of PDAF relies on user-supplied routines (grey boxes)

Coupling to an existing model

- We now also have a Python interface to PDAF, pyPDAF:
 - o <u>https://github.com/yumengch/pypdaf</u>
- Build a simple DA system using pyPDAF:
 - https://colab.research.google.com/github/yumengch/pyPDAF/
 - $\circ\,$ If you run the notebook on your local computer:
 - conda create -n pyPDAF -c yumengch -c conda-forge pyPDAF jupyter matplotlib
 - Any feedback on pyPDAF and the tutorials are welcome!

