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• Lyapunov exponents are the ``averages’’ of singular 
values of tangent linear model. 

•               are associated with stable modes and will 
disappear over time. 

•               are associated (pseudo)-modes.

•               are associated with unstable modes. These need 
to be constrained by observations. 

• Without model error N > unstable modes, if model error 
are added more ensemble members are needed. 
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How large should the ensemble be?

Image: Huhn, F., & Magri, L. (2020). Optimisation of chaotically perturbed acoustic limit 
cycles. Nonlinear Dynamics, 100, 1641-1657.

perturbation



• Lyapunov spectrum is generally unknown. 

• In practice run as large of an ensemble as practically possible.

• Use statistical tricks to compensate for limited ensemble size.
• Inflation

• Covariance localisation
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How large should the ensemble be?



• The ensemble Kalman Filter theory assumes that the ensemble is large enough to give an accurate 
estimate of the sample mean and covariance, ത𝐱 and 𝐏.

• Even for a two variable model a large sample size is needed to accurately estimate the mean and 
covariance:

Example:
True distribution
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Limited ensemble size creates sampling error



Consequence of sampling error 

• Analysis covariance depends nonlinear on forecast covariance

• Inserting erroneous forecast covariance                                         it can be 
shown that  
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Variance bias is function of ensemble size
• In limit                the mean squared error 

and ensemble variance match on average. 

• For small ensembles, the ensemble spread 
underestimates the analysis uncertainty. 

• Smaller ensembles result in less error 
removal. 
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Image: Sacher, W., & Bartello, P. (2008). Sampling errors in ensemble Kalman filtering. 
Part I: Theory. Monthly Weather Review, 136(8), 3035-3049.
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A system without sampling error can 
correctly follow the observations within 
their error.

time

likelihood 
spread

posterior 
spread

Sample est. of 
prior spread

Sample est. of 
posterior spread

*
*

***

***
***

1.

1. Sample estimate of prior spread is too small

2.

2. Too much confidence in the prior means the analysis underfits 
the observations and the posterior spread is too small

3..

3. Overconfident posterior leads to an overconfident prior at the next 
assimilation time, which is exasperated further by under sampling.

4.
4. On each cycle the overconfidence is propagated and worsened 
until there is no spread in the prior and the analysis is no longer 
able to use the information in the observations.

Sampling error results in filter divergence



Methods to mitigate effect sampling error
• ETKF-N (Bocquet & Sakov, 2012). 

• Relaxation

• Inflation
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Bocquet, M., & Sakov, P. (2012). Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes in Geophysics, 19(3), 383-399.



Relaxation
• Relaxation to prior perturbation (Zhang & Sun, 2004):

• Does not work with rotation in ETKF as there is not a one-to-one relation between forecast 
and analysis members. 

• When using            the stochastic EnKF can be used without stochastic error perturbations. 
This is known as DEnKF (Sakov & Oke, 2008). 

• Relaxation to prior spread (Whitaker & Hamill, 2012):
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Zhang F, Snyder C, Sun J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev. 132: 1238–1253. 
Sakov, P., & Oke, P. R. (2008). A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus A: Dynamic Meteorology and Oceanography, 60(2), 361-371.
Whitaker, J. S., & Hamill, T. M. (2012). Evaluating methods to account for system errors in ensemble data assimilation. Monthly Weather Review, 140(9), 3078-3089.



Ensemble inflation
Ways to inflate

• Additive inflation (Mitchell & Houtekamer, 2000): 

• At each model time step add a random perturbation using similar ideas to representing 
model error given in the last lecture

• Prior multiplicative inflation (Anderson & Anderson, 1999):

• Posteriori multiplicative inflation:
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Mitchell, H. L., & Houtekamer, P. L. (2000). An adaptive ensemble Kalman filter. Monthly Weather Review, 128(2), 416-433.
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Monthly weather 
review, 127(12), 2741-2758.



Tuning the inflation factor: rank histogram
Method 1: rank histograms (Hamill, T., 2001):

• For the ensemble to be reliable it is assumed that it is sampling the same distribution as the truth. 

• Rank histogram: histogram of

• Find factor     that makes rank histogram as uniform as possible. 

Interpretation:

• Concave shape- the ensemble is under spread

• Convex shaped- the ensemble is overspread

• Flat- the ensemble is correctly spread

• Asymmetric- the ensemble is biased
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Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review, 129(3), 550-560.
Migliorini, S., Dixon, M., Bannister, R., & Ballard, S. (2011). Ensemble prediction for nowcasting with a convection-permitting model—I: description of the system and the impact of radar-derived surface 
precipitation rates. Tellus A: Dynamic Meteorology and Oceanography, 63(3), 468-496.

Example:
Observation: 2.45+0.06=2.51
Ensemble predictions: 1.23, 1.45, 2.32, 2.56, 3.00
so rank is 3



Method 2: Covariance matching

• Desroziers relations 

• Inserting

    

    and taking the trace gives that the inflation factor can be found by solving

   or 
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Tuning the inflation factor: covariance matching

Kotsuki, S., Ota, Y., & Miyoshi, T. (2017). Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real atmosphere. Quarterly Journal of the Royal Meteorological Society, 
143(705), 2001-2015.
Desroziers, G., Berre, L., Chapnik, B., & Poli, P. (2005). Diagnosis of observation, background and analysis‐error statistics in observation space. Quarterly Journal of the Royal Meteorological Society: A journal of the 
atmospheric sciences, applied meteorology and physical oceanography, 131(613), 3385-3396.



Spurious correlations
•                                                                              shows that DA corrections lie in image       . If 

                                    the dimension of the image is N-1, limiting possible shape corrections. 

• The correlation will be subject to sampling error. Implying that observations can influence 
regions and variables that they shouldn’t.
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True covariance
Sample N=16 

covariance90% confidence 
interval sample 

correlation

Image: Pasmans, I., Chen, Y., Carrassi, A., & Jones, C. K. (2023). Tailoring data 
assimilation to discontinuous Galerkin models. arXiv preprint arXiv:2305.02950.



Localisation
• Localisation removes spurious correlations and increases rank of the covariance.

• Different localisation techniques:
• Scale-dependent localisation. 

• Adaptive covariance localisation.
• Optimal localisation (Ménétrier & Auligné, 2015).

• ECORAP (Bishop & Hodyss, 2009). 

• Non-adaptive covariance localisation.

• Domain localisation.

14Bishop, C., & Hodyss, D. (2009). Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus A: Dynamic Meteorology and Oceanography, 61(1), 84-96.
Ménétrier, B., Auligné, T. (2015). Optimized localization and hybridization to filter ensemble-based covariances. Monthly Weather Review, 143(10), 3931-3947.



Covariance localisation
• Suppress long –distance correlations as non-physical. 

•  Entries of L far from diagonal tapper to zero,
 e.g.

• Pick localisation length scale l based on 
calibration or physical length scales 
(e.g. internal Rossby radius of deformation).  
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Domain localisation
• Domain localisation is used by the local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). 

• LETKF procedure:

• To avoid discontinuous DA corrections observational error variances are gradually inflated for 
observations far from selected grid point i, e.g. 

16Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007). Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1-2), 112-126.
Image: Elvidge, S., & Angling, M. J. (2019). Using the local ensemble transform Kalman filter for upper atmospheric modelling. Journal of Space Weather and Space Climate, 9, A30.

Select grid point 
Select observations in 

vicinity
Calculate correction 

using ETKF
Apply correction to 

selected grid point only



Localisation comparison
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Covariance localisation Domain localisation (LETKF)

Covariance modified Background error covariance Observation error covariance

Compatible solver Iterative Analytic

Suitable for observation types All Point observations

Parallelizable Difficult Trivial

Optimal length scale Larger than in domain localisation Shorter than in covariance 
localisation



Summary

• Ensemble data assimilation relies on a sample estimate of the mean and covariance of forecast 
distribution. This allows it to provide a flow-dependent estimate of the forecast uncertainty.

• If the ensemble size is much smaller than the size of the state then sampling error becomes an 
issue

• Biases

• Analysis increments lie in the subspace of the ensemble

• Filter divergence

• Spurious correlations

• To make ensemble DA practical need

• Ensemble inflation

• Localisation

• …Hybrid methods
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