Machine Learning

Jochen Bröcker
University of Reading, UK

May 9, 2024

Contents

Setup and aims

Basic concepts of classification and regression

Linear models

Data Assimilation and ML

Problem of machine learning

Problem of machine learning

- Data tells a story
- Information or "gist" of story extracted
- Extracted information is used to re-tell the story
- Errors in re-telling may be used to revise extracted information

Ultimate Goal:
Be able to predict behaviour of unseen data, or "how does the story continue".

Examples of machine learning problems:

- Time series models
- Data assimilation
- Unsupervised learning
- Regression and classification

Examples for unsupervised learning methods

\ldots apply to data set $D=\left\{\mathrm{x}_{n} \in F, n=1,2, \ldots\right\}$, where F is potentially very high dimensional.

Clustering Group data into representative "clusters". Cluster centres represent points in the cluster

Principal Component Analysis Find principal axes of minimal ellipsoid encompassing the data. Then chose subspace spanned by axes with large projection, delete remaining axes.

General framework for unsupervised learning methods

Given data points x_{1}, x_{2}, \ldots in "large" (or high dimensional) space F, find a "small" (or low dimensional) subset $F_{0} \subset F$ and a map

$$
f: F \rightarrow F_{0} \subset F
$$

which "approximates the identity", i.e.

$$
r_{N}=\sum_{n=1}^{N} d\left(x_{n}, f\left(x_{n}\right)\right)
$$

is small (and d is an appropriate measure of distance).
Trade-Off
A larger F_{0} gives a smaller error r_{N}, but implies a higher complexity of f.

Examples for regression and classification

Classification: Identify all pictures with cats (or tumors, or ...)

Regression: Identify functional relationship

Multilabel regression, probabilistic regression, ...

The main ingredients of regression

 and classification- Two spaces F, G with feature space F potentially very large and target space G very small (i.e. \mathbb{R} or finite set);
- a training data set T of feature value pairs $\left(x_{n}, y_{n}\right), n=1, \ldots, N$ with features $x_{n} \in F$ and targets $y_{n} \in G$;
- a model class \mathcal{F} of functions $f: F \rightarrow G$;
- a loss function $L: G \times G \rightarrow \mathbb{R}_{\geq 0}$ with the property that $L(y, y)=0$ for all $y \in G$;
- a measure of complexity $\kappa: \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$

The value $L(y, f(x))$ measures the error of the function $f \in \mathcal{F}$ in mapping the feature x onto the target y.
The value $\kappa(f)$ measures the "complexity" (i.e. irregularity, number of parameters) of the function $f \in \mathcal{F}$.

The loss minimisation principle

Better: structural loss minimisation principle

Aim:
Find functional relationship $f \in \mathcal{F}$ between features and targets.
Loss minimisation principle:
Find $f_{T} \in \mathcal{F}$ by minimising training error

$$
E_{T}:=\frac{1}{N} \sum_{n=1}^{N} L\left(y_{n}, f\left(x_{n}\right)\right)
$$

over $f \in \mathcal{F}$, subject to a constraint $\kappa(f) \leq c$.
Note: f_{T} depends on the training set T and also on c.

Assessing performance

General Assumption:

- Feature-target pairs $\left\{\left(x_{n}, y_{n}\right), n=1,2, \ldots\right\}$ are independent and identically distributed random variables
- $y_{n}=g\left(x_{n}\right)+r_{n}$ with r_{n} "noise"
- $L(y, \hat{y})=(y-\hat{y})^{2}$ "Quadratic loss"

Test error:
is defined as

$$
\mathrm{e}_{\text {test }}:=\mathbb{E}\left(y-f_{T}(x)\right)^{2}
$$

where \mathbb{E} is over T and a feature-target pair not in T.

Bias-variance decomposition

Let $\bar{f}(\xi)=\mathbb{E}\left(f_{T}(\xi)\right)$ the "average model" for each $\xi \in F$.
Remember $y=g(x)+r$.

$$
\mathrm{e}_{\text {test }}=\underbrace{\mathbb{E} r^{2}}_{\text {noise }}+\underbrace{\mathbb{E}(g(x)-\bar{f}(x))^{2}}_{\text {bias }}+\underbrace{\mathbb{E}\left(f_{T}(x)-\bar{f}(x)\right)^{2}}_{\text {variance }}
$$

Bias variance trade-off and model complexity

Demonstration later in context of linear models

Typical Bias-Variance Tradeoff

 Bias decreases with k. Variance increases with k. Test error exhibits minimum.

- The complexity κ controls the trade-off.
- How do we estimate an appropriate value for κ ?
- The training error E_{T} is a bad estimator for the test error $e_{\text {test }}$ (typically becomes better with κ due to overfitting).

Why are training and test error different?

Demonstration later in context of linear models

The training error E_{T} is a bad estimator for the test error $e_{\text {test }}$.

$$
\begin{aligned}
\mathrm{e}_{\text {test }} & =\mathbb{E}\left(y-f_{T}(\mathrm{x})\right)^{2} \quad(\mathrm{x}, y) \text { independent from } T \\
E_{T} & =\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-f_{T}\left(\mathrm{x}_{n}\right)\right)^{2} \\
& \cong \mathbb{E}\left(y-f_{T}(\mathrm{x})\right)^{2} \quad(\mathrm{x}, y) \text { contained in } T .
\end{aligned}
$$

Estimating the test error

Demonstration later in context of linear models

We find a bias-variance decomposition for the training error. But there will be another term!
Remember: $\left(x_{n}, y_{n}\right) \in T$. Then

$$
\begin{aligned}
E_{T} \cong & \mathbb{E}\left(y_{n}-f_{T}\left(x_{n}\right)\right)^{2} \\
= & \mathbb{E}\left(y_{n}-\bar{f}\left(x_{n}\right)\right)^{2} \quad \text { bias } \\
& +\mathbb{E}\left(\bar{f}\left(x_{n}\right)-f_{T}\left(x_{n}\right)\right)^{2} \quad \text { variance } \\
& -2 \mathbb{E}\left(y_{n}-\bar{f}\left(x_{n}\right)\right)\left(f_{T}\left(x_{n}\right)-\bar{f}\left(x_{n}\right)\right) \\
= & e_{\text {test }}-2 \underbrace{\mathbb{E}\left(y_{n}-\mathbb{E}\left(y_{n} \mid x_{n}\right)\right)\left(f_{T}\left(x_{n}\right)-\bar{f}\left(x_{n}\right)\right)}
\end{aligned}
$$

The term $\boldsymbol{\oplus}$ is the correlation between y_{n} and $f_{T}\left(x_{n}\right)$ at fixed x_{n}, averaged over x_{n}.

The linear model

- $T=\left\{\left(x_{n}, y_{n}\right), n=1, \ldots, N\right\}$ with $x_{n} \in \mathbb{R}^{d}$ and $y_{n} \in \mathbb{R}(d$ potentially very large);
- model class $\mathcal{F}=\left\{f(x)=\beta^{t} \mathrm{x}, \beta \in \mathbb{R}^{d}\right\}$
- loss function $L(y, \hat{y})=(y-\hat{y})^{2}$
- measure of complexity $\kappa(\beta)=|\beta|^{2}$.

A few remarks

- the models are linear in the parameters, but can be nonlinear in the features; to treat models of the form $f(x)=\beta^{t} \phi(x)$ just introduce new features $\mathrm{z}=\phi(\mathrm{x})$;
- Rather than minimising training error under constraint, we may minimise

$$
R_{T}:=\frac{1}{N} \sum_{n=1}^{N}\left(y_{n}-\beta^{t} x_{n}\right)^{2}+\lambda|\beta|^{2}
$$

The linear model

continued

Convenient to introduce notation

$$
X:=\left[\begin{array}{c}
x_{1}^{t} \\
\vdots \\
x_{N}^{t}
\end{array}\right] \quad Y:=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Then fitted parameters can be written as

$$
\beta=\left(X^{t} X+N \lambda\right)^{-1} X^{t} Y
$$

We define the fitted outputs $\hat{y}_{n}=\beta^{t} x_{n}$ and

$$
\hat{Y}:=\left[\begin{array}{c}
\hat{y}_{1} \\
\vdots \\
\hat{y}_{N}
\end{array}\right]=\mathrm{X} \beta=\mathrm{X}\left(\mathrm{X}^{t} \mathrm{X}+N \lambda\right)^{-1} \mathrm{X}^{t} Y=H Y
$$

with hat matrix H (it puts the hat on the y 's).

Estimating the test error for the linear model

Assumption for estimating test error:
$\beta=\left(X^{t} \mathrm{X}+N \lambda\right)^{-1} \mathrm{X}^{t} Y$.

$$
E_{T} \cong e_{\text {test }}-2 \underbrace{\mathbb{E}\left(y_{n}-\mathbb{E}\left(y_{n} \mid x_{n}\right)\right)\left(f_{T}\left(x_{n}\right)-\bar{f}\left(x_{n}\right)\right)}_{\text {© }}
$$

with

$$
\boldsymbol{\phi}=\mathbb{E}\left(y_{n}-\mathbb{E}\left(y_{n} \mid x_{n}\right)\right)\left(f_{T}\left(x_{n}\right)-\bar{f}\left(x_{n}\right)\right)=\frac{1}{N} \mathbb{E} r_{n}^{2} \mathbb{E} \operatorname{tr}(H)
$$

Example: Wine quality data

: Estimate of $\mathrm{e}_{\text {test }}$ with hat matrix
: Estimate of $e_{\text {test }}$ with crossvalidation
: Training error

Setup of Data Assimilation

Consider signal process $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots\right\}$ satisfying

$$
Z_{n+1}=\mathcal{M}\left(Z_{n}, \theta\right)+R_{n+1}, \quad n=0,1, \ldots
$$

on some state space E and with model \mathcal{M} and unknown parameter. The observation process $\left\{Y_{1}, Y_{2}, \ldots\right\}$ is given by

$$
Y_{n}=\mathcal{H}(X)+S_{n}, \quad n=1,2, \ldots
$$

Problem statement

Estimate θ (along with Z_{n}) from observations Y_{1}, Y_{2}, \ldots
Cannot be mapped 100% to ML framework as presented so far.

Relation with ML I

Idea:
Estimate θ by using Y_{n} as target and Y_{1}, \ldots, Y_{n-1} as feature for each $n=1,2, \ldots$.

Loss minimisation principle:
Find θ by minimising prediction error

$$
E(\theta):=\frac{1}{N} \sum_{n=1}^{N} L\left(Y_{n}, \hat{Y}_{n}\right)
$$

where \hat{Y}_{n} is a predition of Y_{n} computed through DA. Dependence on θ is implicit in \hat{Y}_{n}.

Relation with ML II

More general method: Maximum likelihood approach
Find θ by minimising prediction error

$$
\mathcal{L}(\theta):=\log p_{\theta}\left(Y_{1}, \ldots, Y_{n}\right)
$$

where $p_{\theta}(\ldots)$ is the probability density of Y_{1}, \ldots, Y_{n}. Computation of this very difficult but comes as a by-product of fully nonlinear data assimilation.

Alternative method: adjoining parameter to state vector

$$
\begin{aligned}
Z_{n+1} & =A_{n} Z_{n}+b f+\rho R_{n+1} \\
Y_{n} & =Z_{n}^{(1)}+\sigma S_{n} \\
A & =\left(\begin{array}{cc}
\cos (\omega n) & -\sin (\omega n) \\
\sin (\omega n) & \cos (\omega n)
\end{array}\right), \quad f=\binom{1 / 2}{1},
\end{aligned}
$$

with b unknown parameter.
Estimate b by adjoining another state equation

$$
b_{n+1}=b_{n}
$$

making this a 3-dimensional Data Assimilation problem.

Alternative method: adjoining parameter to state vector

Results

For further reading

圊 T．Hastie，R．Tibshirani，and J．Friedman．
The Elements of Statistical Learning． Springer，New York，second edition， 2009.
囯 Jochen Bröcker，David Engster，and Ulrich Parlitz．
Probabilistic evaluation of time series models；a comparison of several approaches．
Chaos，19， 2009.
围 Julien Brajard，Alberto Carrassi，Marc Bocquet，and Laurent Bertino．
Combining data assimilation and machine learning to infer unresolved scale parametrization．
Philosophical Transactions of the Royal Society A，379（2194）： 20200086， 2021.

