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Forecast models based on machine learning are here and they’re good!

• Huawei’s Pangu-Weather (Bi et al., 2022, arXiv preprint arXiv:2211.02556)

• Google DeepMind’s GraphCast (Lam et al., 2022, arXiv preprint arXiv:2212.12794)
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ERA5: reanalysis as 

training data (1979-2017) 

and validation data (2018)

HRES: ECMWF T1279Co 

(9 km) 10 day forecast 

https://arxiv.org/pdf/2212.12794.pdf

GraphCast: 10 day forecast 

at 0.25 degrees (25 km)

Run time

30 minutes (128 

nodes of HPC)

1 minute (1 

TPU)



Machine learning weather forecasts out-perform* physics-based models
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ECMWF charts catalogue - experimental: machine learning models

Ben-Bouallegue et al. (2023) The rise of data-driven weather forecasting - https://doi.org/10.48550/arXiv.2307.10128
Bi et al. (2023) Accurate medium-range global weather forecasting with 3D neural networks - https://doi.org/10.1038/s41586-023-06185-3
Lam et al. (2023) Learning skilful medium-range global weather forecasting - https://doi.org/10.1126/science.adi2336

Physics-based model

Data-driven (ML) models

https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20learning%20models%22%5D%7D
https://doi.org/10.48550/arXiv.2307.10128
https://doi.org/10.1038/s41586-023-06185-3
https://doi.org/10.1126/science.adi2336


Is machine learning going to replace data assimilation?

• Stephan Rasp’s “big shark” at ISDA online - https://www.youtube.com/watch?v=CoiVfwJU4TY

See also e.g:

Vaughan et al., 2024: Aardvark Weather: end-to-end data-driven weather forecasting, https://doi.org/10.48550/arXiv.2404.00411

Cintra et al., 2016: Tracking the mode: Data assimilation by artificial neural network, https://doi.org/10.1109/IJCNN.2016.7727227
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https://www.youtube.com/watch?v=CoiVfwJU4TY
https://doi.org/10.48550/arXiv.2404.00411
https://doi.org/10.1109/IJCNN.2016.7727227


Or is data assimilation the hidden secret behind data-driven forecasting?

• Training data

– Sequences of gridded atmospheric and 

surface state variables

– E.g. Graphcast was trained on ERA5 

from 1978 to 2018 

• Initial conditions for the data-driven 

weather forecast

• DA does the hard bit: solving the 

inverse problem to infer gridded state 

variables from observations.
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Train a data 

driven model

00 UTC 1st Sep 1985  06 UTC 1st Sep 1985  

12 UTC 22nd Mar 2024  

Make a weather 

forecast using a 

data driven model

ERA5 

analyses

ECMWF 

operational 

analyses



Direct observation prediction – a new project at ECMWF

Tony McNally et al. (2024, ECMWF newsletter) - https://www.ecmwf.int/en/newsletter/178/earth-system-science/red-sky-night-producing-weather-forecasts-directly
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12 UTC 22nd Mar 2024  00 UTC 23rd Mar 2024  

https://www.ecmwf.int/en/newsletter/178/earth-system-science/red-sky-night-producing-weather-forecasts-directly
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An ML example: microwave land 
surface observation operator

Python, Keras, Tensorflow, Numpy, Matplotlib, Xarray



Datasets
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AMSR2 24GHz v-pol observations

10 possible predictors for the 

brightness temperature

Skin temperature

Soil moisture

Leaf area index

+ orography, snow depth, 

snow density, integrated 

water vapour, cloud, rain 

and snow water contents

Labels Features



Data preparation
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Dataset of 470,000 observations 

and colocated model data

Prepare numpy arrays of correct 

shape for Keras

Normalise ‘features’ x to 

roughly -1 to +1

And... (not shown) normalise 

labels y to within 0 to 1



Sigmoid activation function  

10EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

in

out

𝜎()



Feedforward neural network - example
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𝑥1

𝑥2

𝑥3

𝑤11

𝑤1,2
𝑤1,3

𝑤2,3

𝑤2,2

𝑤2,1

𝑤3,1

𝑤3,2

𝑤3,3

+𝑏1

+𝑏2

+𝑏3

x′ =  𝜎(Wx) + b

𝑥3

1 hidden layer

output layer

𝑦+𝑏′1

𝑤′1

𝑤′2

𝑤′3

y =  𝜎(W′x′) + b′



Set up a neural network for the land surface observation operator
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Train it (about 25 minutes on a linux workstation)
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epoch

Loss function Adam – a sophisticated 

stochastic gradient descent 

(SGD) minimiser

Default “loss 

function” is just the 

4D-Var Jo without 

representation of 

observation error.

“Backpropagation” is ML’s term 

for computing gradients of the 

cost function with respect to 

trainable parameters, using 

calls through the adjoints of 

each neural network layer.

~Variational data assimilation without error representations, without regularisation, without state update



Results (ability to fit training dataset) 
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Observations ML predicted

Physically-based simulation produced by 

IFS (RTTOV for atmosphere, dynamical 

emissivity retrieval for surface emissivity)

Hand-written function to recover TB



Problems with this toy NN model for 24 GHz radiances

• It’s not as good as the current physical methods

• The input variables are not sufficient to drive the outputs

– Missing variables – e.g. over Greenland, detailed knowledge of snow and ice 

microstructure

• One of the fundamental problems for machine learning in the earth 

system domain:

– Neither the models nor the input state are fully known

– Chicken and egg problem: can’t train the model if you don’t know the necessary 

inputs well enough
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Types of ML



Types of ML – supervised learning
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x2x1 nn()

Neural 

network Supervised learning:

• ML as a "universal function approximator" (Hornik, 1991)

• Both inputs x1 and outputs x2 need to be provided as 

training data

• An "emulator" / "surrogate" / "empirical model"

Encoder-decoder:

• Data compression

• Data assimilation in the space of an 

autoencoder (Peyron et al., 2021)

• Still needs both inputs and outputs to 

train the model



Types of ML – unsupervised learning – generative ML
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What if we could just have the decoder?

• How do we train it?

• We could train an encoder-decoder 

on something, and then throw away 

the encoder.

• Or find some more clever way...

Latent space: a 

reduced statistical description 

of a phenomemon
A bit like a set of eigenvalues in 
a principal component 
decomposition

Reconstruction

Snowflake images from Leinonen and 

Berne 

(2021, https://doi.org/10.5194/amt-13-

2949-2020)

Generative Adversarial Network (GAN):

• Generator (~decoder): make an 

image

• Discriminator (~encoder): given an 

image, tell if it is real or fake -> drives 

the loss function

Reconstructed

Real

Random vector 

in latent space

https://doi.org/10.5194/amt-13-2949-2020
https://doi.org/10.5194/amt-13-2949-2020
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How ML can benefit DA



What does ML bring for data assimilation? 1) surrogate modelling

• Train against existing datasets, e.g. reanalysis or an existing physical model

• Acceleration:

• E.g. use many more ensemble members, allowing previously unaffordable data 

assimilation algorithms (Chattopadhyay et al. , 2021, GMDD, 

https://doi.org/10.5194/gmd-2021-71, generate a 1000-member ensemble)

• E.g. generate samples of model error from which to derive a model error 

covariance matrix: Bonavita and Laloyaux, 2022 (https://arxiv.org/abs/2209.11510)

• Space compression:

• E.g. data assimilation in the latent space of an auto encoder (Peyron et al., 2021, 

Latent space data assimilation by using deep learning 

https://arxiv.org/abs/2104.00430)

• Numerical differentiation:

• E.g. provide a tangent linear and adjoint for variational data assimilation: Gravity 

wave drag scheme emulated by ML and then ML used to provide TL/adjoint: 

Hatfield, Chantry et al., 2021(https://doi.org/10.1029/2021MS002521)
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x2x1

Empirical 

model

Known 

states

https://doi.org/10.5194/gmd-2021-71
https://arxiv.org/abs/2209.11510
https://arxiv.org/abs/2104.00430
https://doi.org/10.1029/2021MS002521


What does ML bring for data assimilation? 2) learn new models

Learn new models (or model components) from observations, 

• where physical models do not exist or are not good enough

• where gridded reanalysis datasets don’t exist because we're trying to look at 

something new

Solving this fundamental problem is covered in most of the second half of this lecture...

21
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Theoretical links between ML and DA



October 29, 2014

The forward and 
inverse problem
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𝑦 = ℎ(𝑥, 𝑤)
Forward model

Geophysical 

state

Model 

parameters

Observations



The inverse problem solved by Bayes theorem
with state AND parameters
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𝑃(𝑥, 𝑤|𝑦) = 𝐾 (𝑦, 𝑃 𝑦|𝑥, 𝑤 , 𝑃(𝑥, 𝑤))

Probabilistic equivalent of 

the forward model h()

Geophysical 

state

Model 

parameters

Bayes 

theorem

Observations

(Posterior) Probability of x and w given y Prior probability of x and w 
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Cost function for variational DA

25

Cost function

Assume Gaussian errors (error standard deviation 𝜎) 

and for clarity here simplify to scalar variables

and ignore any covariance between observation, model or state error

Observation termDA Prior knowledge of 

state

Prior knowledge of 

model

Prior (background)
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Cost / loss function equivalence of ML and variational DA
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Cost function

Assume Gaussian errors (error standard deviation 𝜎) 

and for clarity here simplify to scalar variables

and ignore any covariance between observation, model or state error

Loss function

Observation termDA

ML
Basic loss 

function

Prior knowledge of 

state

Weights 

regularisation

Prior knowledge of 

model

Feature 

error?



Machine learning (e.g. NN)                        Variational data assimilation
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Labels y Observations yo

Features x State x

Neural network or other 

learned models

y′ = 𝑊 x Physical forward 

model

y = 𝐻 x

Objective or loss  

function

y − y′ 2 Cost function 𝐽 = 𝐽𝑏 + yo − 𝐻 x
𝑇

R−1 yo − 𝐻 x

Regularisation w Background term 𝐽𝑏 = x − xb 𝑇
B−1 x − xb

Iterative gradient descent Conjugate gradient method (e.g.)

Back propagation Adjoint model 𝜕𝐽

𝜕x
= H𝑇 𝜕𝐽

𝜕y

Train model and then apply it Optimise state in an update-forecast cycle

Boukabara et al. (2021) https://doi.org/10.1175/BAMS-D-20-0031.1

https://doi.org/10.1175/BAMS-D-20-0031.1
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Bayesian equivalence of ML and DA

28

https://doi.org/10.1162/neco_a_01094

https://arxiv.org/abs/2001.06270

https://doi.org/10.1175/1520-0477(1998)079%3C1855:ANNMTP%3E2.0.CO;2

https://doi.org/10.1098/rsta.2020.0089Geer (2021)

Bocquet et al. (2020)

Abarbanel et al. (2018)

Hsieh and Tang (1998)

Goodfellow et al. (2016) https://www.deeplearningbook.org

As a Bayesian network

𝑦 = ℎ(𝑥, 𝑤)

https://doi.org/10.1098/rsta.2020.0089


October 29, 2014

Bayesian networks: representing the factorisation of joint probability distributions
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1. Factorise in two different ways using the chain rule of probability

2. Equate the two right hand sides and rewrite

3. Rewrite by putting back the joint distributions of x,w: Bayes’ rule 



Time evolution of state – cycled data asimilation
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Time evolving 

state

Time-constant 

model (parameters)

Observations

1. Update parameters and 

state from observations

3. Update parameters and 

state from observations

2. Forecast the next state

4. Forecast ...



Inside an atmospheric model & data assimilation timestep
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One model 

time-step



Learning an improved model of cloud physics (ML or DA)
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We want to train a model against observations, but we 

cannot directly observe gridded intermediate states 𝑥1.1

and 𝑥1.2 … or more precisely model tendencies …



Inside an atmospheric model
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… so train the model inside 

the data assimilation system
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Hybrid ML and DA / ML with physics

A few highlights from a rapidly developing new field



Combine physical and empirical models: Physically constrained ML
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https://github.com/maziarraissi/PINNs
Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics Informed Deep 

Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations." 

arXiv preprint arXiv:1711.10561 (2017)

Custom loss function

Neural network

Burger’s equation
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
− 𝜐

𝜕2𝑢

𝜕𝑥2 = 0

Gradients of the network

https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10561


Combine physical and empirical models: parameter estimation

• Parameter estimation in data assimilation

– E.g. Kotsuki et al. (2020, 

https://doi.org/10.1029/2019JD031304)  

estimation of autoconversion parameter in 

atmospheric GCM 
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https://doi.org/10.1029/2019JD031304


Using machine learning for bias correction - "model error correction"

Correct model or observation error:

• Review: Farchi et al. (2021) https://doi.org/10.1016/j.jocs.2021.101468

• Train against historical data assimilation increments or departures

• It is possible to train “online” inside a data assimilation system

• See later slide...

• A nonlinear extension to existing data assimilation bias correction methods 

• Weak constraint data assimilation

• Parameter estimation

• Variational bias correction (VarBC)

• Example: model error correction in IFS, Bonavita and Laloyaux, 2020 

(https://doi.org/10.1029/2020MS002232)

37

m() x2x1

Imperfectly known 

physical model 

nn()

+

Neural network to 

correct model error

Weak constraint 

4D-Var

Neural network 

estimate of 
model bias

https://doi.org/10.1016/j.jocs.2021.101468
https://doi.org/10.1029/2020MS002232


Model error correction
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m() x2
x1

Complete physical 

forecast model

nn()

+

Neural network to 

correct model error



Hybrid physics – machine learning: "Neural GCM"
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Kochkov et al. (2023) Neural General Circulation Models https://doi.org/10.48550/arXiv.2311.07222

But only half the problem is solved: trained on data assimilation outputs (ERA5)

m() x2
x1

Physical dynamical 

core

nn()

ODE 

solver

Neural network to 

represent model 
physics (and correct 

model error)

https://doi.org/10.48550/arXiv.2311.07222


Hybrid data assimilation and machine learning: train the neural network 
(forecast model, or bias correction) as part of the data assimilation process

• Simultaneous estimation of the initial conditions, NN parameters and dynamical parameters of a model 

(e.g. Lorenz ’63) using data assimilation (Hsieh and Tang, 2001, https://doi.org/10.1175/1520-

0493(2001)129<0818:CNNTID>2.0.CO;2)

• Use iterative cycles of data assimilation followed by neural network training (Brajard et al., 2020, 

https://doi.org/10.1016/j.jocs.2020.101171)

• In development at ECMWF – train a NN within 4D-Var – quasi-geostrophic (QG) model / OOPS

– “Online model error correction with neural networks in the incremental 4D-Var framework”

– Alban Farchi, Marcin Chrust, Marc Bocquet, Patrick Laloyaux, Massimo Bonavita (2022, 

https://doi.org/10.48550/arXiv.2210.13817)

• “Online learning” or sequential learning is a thing in ML too (compared to ”train once” approach)

– e.g. Online sequential Extreme Learning Machine (OS-ELM, Liang et al., 2006) https://doi.org/10.1109/TNN.2006.880583 

– e.g. Forecasting daily streamflow using OSELM (Lima, Cannon, Hsieh, 2016) 

https://doi.org/10.1016/j.jhydrol.2016.03.017 
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https://doi.org/10.1175/1520-0493(2001)129%3c0818:CNNTID%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3c0818:CNNTID%3e2.0.CO;2
https://doi.org/10.1016/j.jocs.2020.101171
https://doi.org/10.48550/arXiv.2210.13817
https://doi.org/10.1109/TNN.2006.880583
https://doi.org/10.1016/j.jhydrol.2016.03.017


Learn new observation operators
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x

h(x,w)

y

Well-constrained model 

variables from the DA system

Observations 

Train a neural network observation 

operator (w = weights) where a 

physical model is not available

• Example: land surface radiances at microwave frequencies 

(but note the chicken and egg problem)

• Example (in retrieval direction) operationally used at ECMWF for soil moisture assimilatiuon 

from SMOS: Rodriguez-Fernandez et al., 2019, "SMOS Neural Network Soil Moisture Data Assimilation in a Land 

Surface Model and Atmospheric Impact", https://www.mdpi.com/2072-4292/11/11/1334

E.g. ocean surface wind speed 

E.g. backscatter triplet from scatterometer

https://www.mdpi.com/2072-4292/11/11/1334
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Hybrid data assimilation and 
machine learning

Sea ice observation operator example
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A trainable empirical-physical network for sea ice assimilation

43

Fixed parameter

Dependent parameter

Trainable parameter

AMSR2 observations

Mixed surface 

emissivity

Known atmosphere 

radiative transfer

Map of sea ice 

fraction to be 

estimated

Maps of empirical 

parameters 
representing 

unknown sea ice 

state including 
microstructure

h() Interpolation operator: map to 

observation location in time and 

space

w – trainable weights of NN 

model for sea ice

Known water surface emissivity

Geolocation
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Built in Python and Tensorflow

44

https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py

A standard dense neural network layer with 

linear activations

Custom loss functions to regularise / constrain the solution

https://github.com/ecmwf-projects/empirical-state-learning-seaice-emissivity-model/blob/master/seaice_layers.py
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Empirical sea ice emissivity model used to retrieve sea ice concentration 
in atmospheric 4D-Var and to allow radiance assimilation over sea ice

45

RTTOV all-sky 

radiative 

transfer model

AMSR2 and 

GMI microwave 

imager 

observations

Neural network weights trained in 

previous step are now held fixed

Sea ice 

concentration and 

three empirical 

parameters 

retrieved at 
observation 

locations

Atmosphere is also updated in 4D-Var, also 

with the benefit of all other observations, and 

can be improved by observations over sea ice
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Forecast impact - temperature

(blue = reduced error; +++ = statistical significance)

46

Improved temperature 

forecasts out to 72 hours in 

the Southern Ocean



October 29, 2014

Hybrid physical-empirical networks - sea ice example

• Sea ice concentration and empirical state estimation will be included in 

cycle 49r1 of the IFS

– Model for sea ice emissivity is the simple neural network trained within the 

hybrid-empirical physical network (and held fixed for now)

– Operational implementation autumn 2024 – one of the first machine-learned 

components of the operational IFS

• Maintainability? Retraining?

• Preprints
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Geer (2023) Simultaneous inference of sea ice state and surface emissivity model using machine learning and 

data assimilation https://doi.org/10.22541/essoar.169945325.51725282/v1

Geer (2024) Joint estimation of sea ice and atmospheric state from microwave imagers in operational 

weather forecasting https://doi.org/10.22541/essoar.170431213.35796940/v1

https://doi.org/10.22541/essoar.169945325.51725282/v1​
https://doi.org/10.22541/essoar.170431213.35796940/v1


Is machine learning going to replace data assimilation?

Machine learning done properly is data assimilation
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Summary: generating new empirical models using ML and DA

• Typical machine learning and variational data assimilation are similar implementations of Bayes’ theorem

• Including known physics into a trainable network is a way of adding prior information in a Bayesian sense

• Existing data assimilation approaches can be very helpful in machine learning:

• Physically-based loss functions

• Physically-based observation (label) and background (feature) errors

• Observation operators to map from grid to irregular and transformed observation space (e.g. satellite radiances)

• Data assimilation frameworks (e.g. weather forecasting) are evolving to be able to train and update empirical models 

(e.g. neural networks) as part of routine data assimilation activities

Don’t throw away the physical model – improve it!

49

Machine learning 

with physical 

constraints

Data assimilation 

with parameter 

estimationMachine learning 

and data 

assimilation: hybrid 

physical-empirical 

networks
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