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A brief recap

Assume that we have

• a prior estimate of the state xb with error covariance matrix 

B

• observations y with error covariance matrix R



Gaussian assumption

If we assume that the errors are Gaussian then the pdf is defined solely by 

the mean and covariance.
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𝑝 𝐱 𝐲  ∝ exp{  −
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{(𝐱 − 𝐱𝑏)𝑇𝐁−1 𝐱 − 𝐱𝑏 + (𝐻 𝐱 − 𝒚)𝑇𝐑−1(𝐻 𝐱 − 𝒚)} }



Variational data assimilation – the idea

In variational data assimilation we seek the solution that 

maximises the a posterior probability p(x|y).

Since

we will have the maximum probability when x minimises

𝑝 𝐱 𝐲  ∝ exp{  −
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐁−1 𝐱 − 𝐱𝑏 + (𝐻(𝐱) − 𝐲)𝑇𝐑−1(𝐻(𝐱) − 𝐲)} }
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1
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(𝐻 𝐱 − 𝐲)𝑇𝐑−1(𝐻(𝐱) − 𝐲) 



We consider two main algorithms

• Three-dimensional variational assimilation (3D-Var)

➢ Where we consider 3 space dimensions.

• Four-dimensional variational assimilation (4D-Var)

➢ Where we consider 3 space dimensions plus time as 

the 4th dimension.

➢ In this case we can consider the observation operator 

to include the dynamical model.

We will present 4D-Var first and 3D-Var as a variant of this.



Four-dimensional variational assimilation 

(4D-Var)
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Aim: Find the best estimate of the true state of the system 

(analysis), consistent with both observations distributed 

in time and the system dynamics.
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4D-Var cost function

with respect to x0, subject to
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- a priori (background) state – Size of order 108 - 109

- Observations – Size of order 106  - 107 

- Observation operator

- Background error covariance matrix

- Observation error covariance matrix

Minimize

For N=0 we have 3D-Var



Numerical minimization - Gradient descent 

methods
Iterative methods, where 

each successive iteration is 

based on the value of the 

function and its gradient at 

the current iteration.

x0
(k+1) = x0

(k) – α φ(x0
(k))

where α is a step length and φ is a direction that depends on

  J(x0
(k) ) and its gradient.

Problem: How do we calculate the gradient of J(x0
(k) ) with 

respect to x0
(k) ?



We introduce Lagrange multipliers λi at time ti and define the 

Lagrangian

Then necessary conditions for a minimum of the cost function 

subject to the constraint are found by taking variations with 

respect to λi and xi.

Variations with respect to λi simply give the original constraint.

Method of Lagrange multipliers

T



Variations with respect to xi give the adjoint equations

with boundary condition λN+1 = 0.

Then at initial time we have

T



An aside – What are the linear operators H & 

M? 
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θSuppose we observe the wind speed ws.

Then we have                  ,              and𝐱 =
𝑢
𝑣

𝐲 = 𝑤𝑠

with

𝐲 = 𝐻(𝐱)

𝐻 𝐱 = 𝑢2 + 𝑣2

Then

𝐇 =
𝜕𝐻

𝜕𝑢
 

𝜕𝐻

𝜕𝑣
=

𝑢

𝑢2+𝑣2
 

𝑣

𝑢2+𝑣2
  



So where have we got to?

with respect to x0, subject to

We wish to minimize

On each iteration we have to calculate  J and its gradient

• To calculate  J we need to run the nonlinear model

• To calculate the gradient of  J we need one run of the 

adjoint model (backward in time) 



BUT this can be computationally expensive!
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Incremental 4D-Var

We solve a series of linearized minimization problems
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Comments on incremental formulation

• Inner loop cost function is linear quadratic, so has a unique 

minimum.

• Can simplify the linear model (low resolution, simplified 

physics) in order to save computational time.

• Equivalent to an approximate Gauss-Newton procedure – 

Convergence results proved by Lawless, Gratton & 

Nichols, QJRMS, 2005; Gratton, Lawless & Nichols, SIAM 

J. on Optimization, 2007.

• Used in several operational centres, including ECMWF 

and Met Office.



3D-FGAT (First guess at appropriate time)

We solve a series of linearized minimization problems
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Replace this equation

with 

ii xx  =+1



Properties of 4D-Var

• Observations are treated at correct time.

• Use of dynamics means that more information can be 

obtained from observations.

• Covariances are implicitly evolved.

• In practice development of linear and adjoint models may 

be complex, but can be done at level of code.

• Standard formulation assumes model is perfect. Weak-

constraint 4D-Var being developed to relax this 

assumption.



Weak-constraint 4D-Var

• The difference between the observation and the model 

trajectory may be due to model error rather than 

observation error.

• In weak constraint 4D-Var we do not assume that the 

model is correct, but assume 

• Then we can either solve for x at each time, or for the 

initial x0 and all the ηi.



State formulation

Error formulation



Comments on weak-constraint formulation

• No longer assumes that the model is perfect, so in theory is 

more realistic.

• The problem becomes much bigger and more complicated 

to solve.

• We don’t really know how to specify the model error 

covariance matrix Q. 

• Even though the two formulations are equivalent, they 

have different mathematical properties.
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