

PERSPECTIVES ON THE USE OF FUTURE CLIMATE DATA

Paula LM Gonzalez

NCAS-Climate/Department of Meteorology, UREAD, UK p.gonzalez@reading.ac.uk

1. DATA AVAILABILITY:

Is there available future weather and climate data? Yes! Loads!

- Ensembles of GCM future projections (CMIP6, PRIMAVERA)
- Ensembles of RCM-downscaled future projections (CORDEX)
- Even proof-of-concept energy variables datasets (ECEM)

2. DATA SUITABILITY:

Is this data fit for purpose? The strengths and limitations strongly depend on the application!

- Limitations by design: not a predictive tool!
- Limitations of frequency and resolution
- Need for bias adjustment
- Sources of uncertainty

3. USE EXAMPLES:

The good and the not so good ...

- Inconvenient uses ...
- Alternative approaches

DATA AVAILABILITY

1. Ensembles of future projections from GCMs (General Circulation Models/Global Climate Models)

- CMIP6: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
 - the main basis for IPCC Assessment Reports
 - standardized experiments, forcings and outputs
 - 33 global modelling centres, more than 70 models
 - global output, future: 2015-2100
- PRIMAVERA: https://www.primavera-h2020.eu/
 - next generation of high-resolution GCMs (up to 25km!)
 - enhanced representation of physical processes that condition weather (e.g., blocking, storms)
 - 7 European modelling centres, 15 models
 - global output, some at high frequency (1hr, 3hr, thanks to UREAD!), future: 2015-2050

2. Ensembles of future projections from RCMs (Regional Climate Models)

- CORDEX : https://cordex.org/
 - coordinated dynamical downscaling intercomparison
 - ensemble defined by multiple GCM-RCM combinations (forcing GCMs from CMIP#)
 - set of standard domains at 0.11° and 0.44° horizontal resolutions (e.g., EURO-CORDEX)
 - some high-frequency output

3. Proof-of-concept datasets/climate services for energy applications

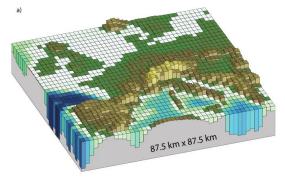
- **ECEM** (https://climate.copernicus.eu/european-climate-energy-mixes)
- CLIM4ENERGY (https://clim4energy.climate.copernicus.eu/, 11 EURO-CORDEX projections, 2 RCP scenarios)
- CLIM2POWER (https://clim2power.com/, to come)
- Others?

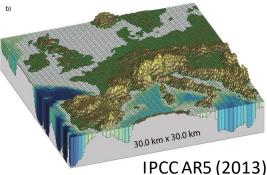
The extent to which future climate projections are fit for purpose depends strongly on the application. Important aspects to consider are:

1. EXPERIMENT DESIGN:

These are projections and not predictions, which means that they are subject to a specific scenario

- CMIP projections: scenarios represent changes in the external forcings, mainly GHGs
- main goal --> how the climate system is likely to respond to changes in these forcings
- other research --> systematic model biases, roles of internal climate variability, predictability, and uncertainties





2. SPATIAL AND TEMPORAL RESOLUTIONS OF THE DATA:

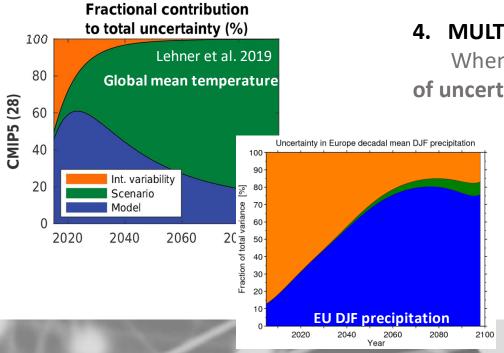
The resolutions and frequencies of the model outputs are **insufficient for very local applications**, such as a specific power plant or the topographic effects on a wind farm

- Last-generation GCMs: ~100km resolutions and ~ 6hr outputs, now improving.
- Downscaling to fine resolutions --> false sense of precision
- Dynamical downscaling does not guarantee the correct representation of weather at the gridpoint scale (e.g., storm not present in forcing GCM, GCM errors + RCM errors)

3. NEED FOR BIAS ADJUSTMENT:

Even at their effective spatial and temporal resolutions, models aren't perfect ...

- **historical simulations** --> model biases: 'correctable' (e.g. systematic model biases, such as a distribution shift) and 'uncorrectable' errors (e.g., frequency of occurrence event).
- A multi-variate correction might be needed to preserve consistency between parameters.
- future projections --> additional assumptions are necessary --> e.g., preservation of trends.
- General consensus --> bias correction needed **before any downstream modelling.** Weather-to-energy conversions --> **non-linear** --> excellent example for this need (e.g., wind power output very sensitive to shape of speed distribution --> simple mean correction might not suffice).



4. MULTIPLE SOURCES OF UNCERTAINTY:

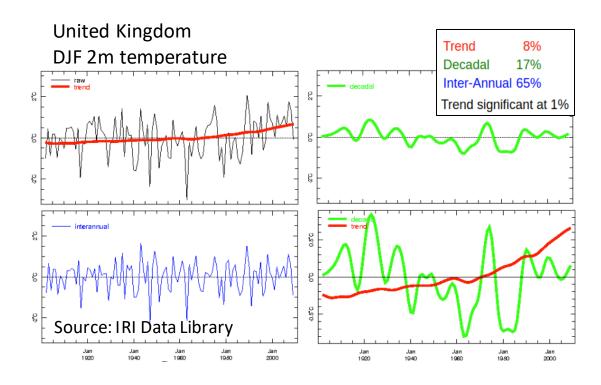
When using future projections, it is important to be aware of the **multiple sources** of uncertainty, their relevance at different scales and the ability to quantify them

- Model uncertainty: need for multiple models to capture it, but still deficient
 approach due to model's interdependence. More relevant in near-term projections
 and at regional scale. Reducible but models evolve slowly.
- Scenario uncertainty: due to unknown evolution of GHGs, irreducible, several scenarios needed
- Internal variability: due to chaotic nature of climate system, inherently irreducible after initial condition information is lost. Represented by large ensemble

SOME EXAMPLES

1) Sampling climate data

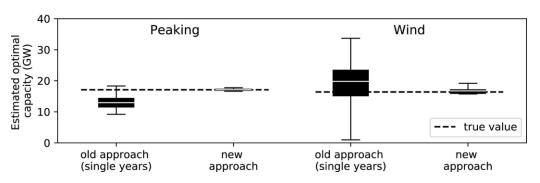
In some regions, decadal variability explains a portion of the variance equal or larger than the trend --> single years or time-slices can be very problematic



But...there are **computational constraints** to using long climate time-series in power system modeling

From Hilbers et al. (2019): Year-to-year climate variability is important for planning and new techniques are being developed to tackle data size for computationally expensive PSMs.

Use of novel *importance subsampling* approach greatly reduces error and uncertainty in estimates of optimal generation capacities



Standard sub-sampling can lead to sub-optimal systems. 'importance subsampling' --> more robust future power systems (e.g., less uncertain capacity factors, reduced unmet demand)

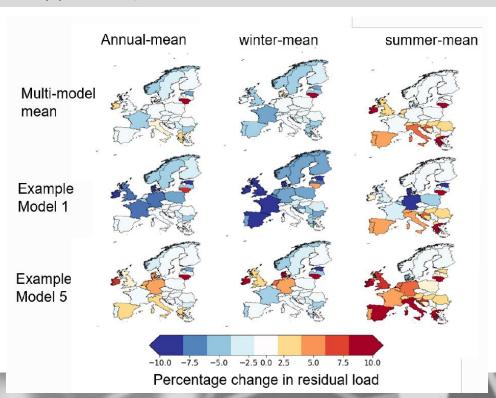
2) Presenting future results ...

When dealing with large multi-model ensembles, the standard approach is to work with the ensemble mean, but this has several pitfalls:

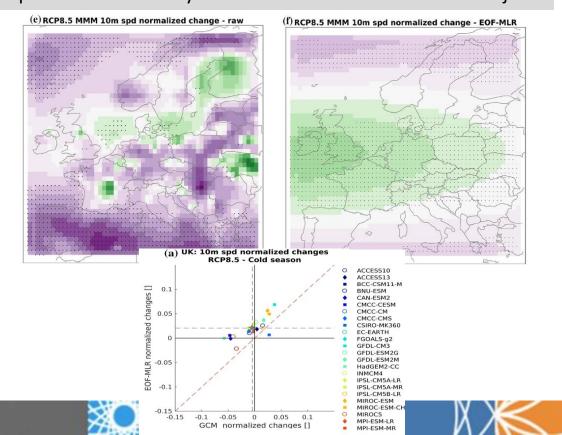
- the most likely outcome is not necessarily the most impactful one;
- if the full spread is considered --> extremely large uncertainties --> useless for decision-making;
- not all uncertainty is of aleatoric nature --> inaccurately represented by standard methods (e.g., confidence intervals).

As an alternative, a 'storylines' approach implies developing a set of physically plausible future evolutions (scenarios/pathways)

From Bloomfield et al. (under review): future projections of demand-net-renewables from individual models (each is physically plausible)



From Gonzalez et al. (2019): future projections of winter wind speed constrained by the evolution of the North Atlantic jet



Paula LM Gonzalez p.gonzalez@reading.ac.uk

References:

Bloomfield H and coauthors, 2020: Quantifying the sensitivity of European power systems to energy scenarios and climate change projections. Under Review.

Eyring, V., and coauthors, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 experimental design and organization. https://doi.org/10.5194/gmd-9-1937-2016

Gonzalez P, Brayshaw D, Zappa G, 2019: The contribution of North Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe. https://doi.org/10.1007/s00382-019-04776

Hawkins, E. and Sutton, R., 2009: The potential to narrow uncertainty in regional climate predictions. https://doi.org/10.1007/s00382-019-04776

Hawkins, E. and Sutton, R., 2009: The potential to narrow uncertainty in regional climate predictions. https://doi.org/10.1007/s00382-019-04776

Hawkins, E. and Sutton, R., 2009: The potential to narrow uncertainty in regional climate predictions. https://doi.org/10.1016/j.apenergy.2019.04.110

Lehner, F., and coauthors, 2020: Partitioning climate projection uncertainty with multiple Large Ensembles and CMIP5/6. https://doi.org/10.5194/esd-11-491-2020

Maraun, D., Shepherd, T., Widmann, M. et al., 2017: Towards process-informed bias correction of climate change simulations. <a href="https://doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1008/rsja/doi.org/10.1007/s10584-018-2317-9.

Shepherd, T.G., 2019: Storyline approach to the construction of regional climate change information. https://doi.org/10.1175/BAMS-0-18-0280

