

Energy and climate modelling: the perspective of a power system researcher and former investment planner

Keith Bell

ScottishPower Professor of Smart Grids and a co-Director of the UK Energy Research Centre

https://www.strath.ac.uk/staff/bellkeithprof/

Perspective of system operator Dependencies of system Controllable operating states Partially controllable **Operating state** Not controllable Not controllable but well Fine-tuning of system settings or partially determined Starting and stopping of units Network configuration and capacity Reserve Available Demand generation policy Network Weatherplanned related Generation Generation faults outages planned forced **Electricity user** outages outages Other behaviour unplanned outages Security Fuel Generation Weather, including capacity costs criteria Asset Temperature Wind speeds policy **PV** generation **Cloud cover** Time Season • Time of day Day of the week

High wind speed shutdown

- ----- Wind produciton, MW (provisional data)
- Wind production plan (aggregate)
- Net regulating
- Wind speed, m/s (average of 15 measurements)

Unexpected hurricane Denmark, January 8th 2005

- Will a high wind-speed shutdown happen?
- When will it happen?
- By how much will wind power drop?
- How quickly?

Source: Eltra See <u>http://www.eltra.dk/show.asp?id=15783</u>

Weather-related transmission network faults in Southern Scotland

Analysis focussed on the Scottish Power Transmission area (Southern Scotland)

- Records of faults, 1984-2012 (28 years)
- Clusters of weather-related faulted identified

Year-round average: 0.006 faults/hour

Weather type	Faults/hour
"Ice, snow, sleet and blizzards"	11.4
Lightning	8.4
"Wind, gale, and windborne object"	18.6
"Corrosion, condensation and salt"	6

Network development: assessing possible future system states

- How many of these cases will there be?
- How many should be satisfied?

Some clustering methods better than others None catch the HILP scenarios Peak demand is not the worst condition

Wind 'drought' for extended periods

Start Date23rd June 2018Duration33 daysPeak gross demand38.0 GWAverage gross demand29.5 GWTotal gross demand23,445 GWhTotal wind output1,448 GWhAverage wind CF8.4%Average wind output1.8 GWDemand met by gas- powered generation46.1%			
Peak gross demand38.0 GWAverage gross demand29.5 GWTotal gross demand23,445 GWhTotal wind output1,448 GWhAverage wind CF8.4%Average wind output1.8 GWDemand met by gas-46.1%	Start Date	<u>23rd June 2018</u>	
Average gross demand29.5 GWTotal gross demand23,445 GWhTotal wind output1,448 GWhAverage wind CF8.4%Average wind output1.8 GWDemand met by gas-46.1%	Duration	33 days	
Total gross demand23,445 GWhTotal wind output1,448 GWh 2018 Mean Average wind CF8.4%28.1%Average wind output1.8 GW6.0 GWDemand met by gas-46.1%37.9%	Peak gross demand	38.0 GW	
Total wind output1,448 GWh2018 MeanAverage wind CF8.4%28.1%Average wind output1.8 GW6.0 GWDemand met by gas-46.1%37.9%	Average gross demand	29.5 GW	
Average wind CF8.4%28.1%Average wind output1.8 GW6.0 GWDemand met by gas-46.1%37.9%	Total gross demand	23,445 GWh	
Average wind output1.8 GW6.0 GWDemand met by gas-46.1%37.9%	Total wind output	1,448 GWh	2018 Mean
Demand met by gas- 46.1% 37.9%			
	Average wind CF	8.4%	28.1%

(wind index for 2018 = 99% of long term average)

Need not just MW capacity of schedulable, flexible generation, demand or storage but MWh capacity, i.e. persistence of output

...but not just in summer

Start Date	<u>2nd Jan 2019</u>	<u>21st Jan 2020</u>
Duration	5 days	4 days
Peak gross demand	45.7 GW	45.2 GW
Average gross demand	36.2 GW	37.5 GW
Total gross demand	4,361 GWh	3,615 GWh
Total wind output	337 GWh	342 GWh
Average wind CF	12.8%	16.2%
Average wind output	2.8 GW	3.5 GW
Demand met by gas- powered generation	56.4%	54.2%

Substantial volumes of energy that cannot be supplied by traditional peak-shifting or diurnal storage, and may occur at times when heat demand is at a peak and able to offer little flexibility

System operation questions

- What will be the future correlation of demand with weather?
 - Increased cooling demand? More electrified heating?
- How to meet demand during long lulls in wind power?
 - How big would 'essential' demand be anyway?
- How to manage high wind speed shutdowns?
 - How deep would be the drop in wind output?
 - How fast might it happen?
- How many faults will there be during storms and how long will a storm last?
 - How many will involve equipment damage, e.g. due to high winds or flooding?
 - Will the system operator be able to operate defensively when a storm is coming?
- (The system operator depends on facilities made available by the investment planner)

Investment planning questions

- How often will 'wind droughts' occur?
 - What will the peak demand be for 'essential' services? (MW question)
 - How long will the drought last and how much energy will be demanded? (MWh question)
- What will the long-term average capacity factors of renewables be? (MWh question)
- What is the right mix of assets to meet demand for electricity?
 - Renewable generation capacity
 - Other low carbon generation capacity
 - Storage capacity (of different types)
 - Interconnector capacity
- How much network capacity will be needed to
 - accommodate the mix of generation, storage and interconnector capacity?
 - enable the system to survive faults and unavailability of generation?
- What equipment, personnel and communications facilities will be needed to recover from major disturbances?
- What can be assumed for the thermal ratings of equipment?