NEXT GENERATION CHALLENGES IN ENERGY-CLIMATE MODELLING 2021

CLIMATE & ENERGY SYSTEMS: FORESIGHT DAYS TO DECADES AHEAD

Online workshop 16th and 17th September 2021

NB: The first plenary session will be recorded and may be released after the event

Organizing committee: Hannah Bloomfield (Reading), David Brayshaw (Reading), Jethro Browell (Glasgow), Matteo de Felice (EU Commission JRC), Paula Gonzalez (Reading), Katharina Gruber (BOKU), Alex Kies (Frankfurt), Julie Lundquist (UColorado), Laurens Stoop (Utrecht), Hazel Thornton (UK Met Office), Jan Wohland (ETHZ), & Marianne Zeyringer (Oslo)
Day 1 – Thursday 16th September

<table>
<thead>
<tr>
<th>UK</th>
<th>Denver</th>
<th>Sydney</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>Welcome</td>
<td>0600</td>
<td>2200</td>
</tr>
<tr>
<td>1310</td>
<td>Keynote talks</td>
<td>0610</td>
<td>2210</td>
</tr>
<tr>
<td>1440</td>
<td>Break</td>
<td>0740</td>
<td>2340</td>
</tr>
<tr>
<td>1500</td>
<td>Research presentations (themed parallel sessions)</td>
<td>0800</td>
<td>0000</td>
</tr>
<tr>
<td>1645</td>
<td>Wrap up discussion</td>
<td>0945</td>
<td>0145</td>
</tr>
<tr>
<td>1700</td>
<td>Official end (Gather remains open for informal networking)</td>
<td>1000</td>
<td>0200</td>
</tr>
<tr>
<td>1800</td>
<td>Gather town closes</td>
<td>1100</td>
<td>0300</td>
</tr>
</tbody>
</table>

Day 2 – Friday 17th September

<table>
<thead>
<tr>
<th>UK</th>
<th>Denver</th>
<th>Sydney</th>
<th>Venue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>Welcome</td>
<td>0600</td>
<td>2200</td>
</tr>
<tr>
<td>1315</td>
<td>Themed breakout groups</td>
<td>0615</td>
<td>2215</td>
</tr>
<tr>
<td>1445</td>
<td>Break</td>
<td>0745</td>
<td>2345</td>
</tr>
<tr>
<td>1500</td>
<td>Themed breakout groups continue</td>
<td>0800</td>
<td>0000</td>
</tr>
<tr>
<td>1600</td>
<td>Plenary reporting from breakout groups</td>
<td>0900</td>
<td>0100</td>
</tr>
<tr>
<td>1630</td>
<td>Discussion</td>
<td>0930</td>
<td>0130</td>
</tr>
<tr>
<td>1700</td>
<td>Official end (Zoom remains open for social discussion)</td>
<td>1000</td>
<td>0200</td>
</tr>
<tr>
<td>1800</td>
<td>End</td>
<td>1100</td>
<td>0300</td>
</tr>
</tbody>
</table>
NEXT GENERATION CHALLENGES IN ENERGY-CLIMATE MODELLING 2021
CLIMATE & ENERGY SYSTEMS: FORESIGHT DAYS TO DECADES AHEAD

Online workshop 16th and 17th September 2021

NB: The first plenary session will be recorded and may be released after the event

Organizing committee: Hannah Bloomfield (Reading), David Brayshaw (Reading), Jethro Browell (Glasgow), Matteo de Felice (EU Commission JRC), Paula Gonzalez (Reading), Katharina Gruber (BOKU), Alex Kies (Frankfurt), Julie Lundquist (UColorado), Laurens Stoop (Utrecht), Hazel Thornton (UK Met Office), Jan Wohland (ETHZ), & Marianne Zeyringer (Oslo)
Welcome

• Thank you to everyone for coming!
 • Exceptional interest in the workshop
 • 255 registrations from around the globe (almost doubled from last year)

• Special thanks:
 • Organizing committee
 • Session convenors – Jethro Browell, Alex Kies, Jan Wohland, Hannah Bloomfield, Paula Gonzalez and Matteo De Felice
 • Invited guest speakers – Jose Manuel Gutierrez, Michael Craig, Christian Grams and Marta Victoria

• Technology/format is experimental – we’d welcome feedback!

• This introduction:
 • Motivation and goals of the workshop
 • Programme / rules of engagement
 • Recording
Motivation - a partial and personal viewpoint

- Energy sector has long been exposed to weather but:
 - Rapidly changing climate ➔ decarbonization (e.g., renewables)
 - Decarbonization ➔ increasing and changing the exposure of energy system to climate

- Relatively weak connections between energy- and climate- research. Timely to build bridges in order to:
 - anticipate effects of future climate on energy (e.g., changes in wind, solar, temperature; frequency/severity of stress events)
 - ensure future energy system “solutions” are robust to climate uncertainty (e.g., design, practice & policy)
 - support cross-fertilization in use of latest science & technology (e.g., extended range forecasting)

Energy-climate science in 2000’s 2010’s 2020’s and beyond

Humber Bridge, near Hull in Yorkshire (UK). Formerly the longest single-span suspension bridge in the world, started construction 1973, opened 1981. Images www.ioshmagazine.com/humber-bridge-open-all-hours; drivetowrite.com/2019/10/06/bridge-across-the-humber/#jp-carousel-55246; historicengland.org.uk/listing/the-list/list-entry/1447321
Motivation - a partial and personal viewpoint

- Energy sector has long been exposed to weather but:
 - Rapidly changing climate ➞ decarbonization (e.g., renewables)
 - Decarbonization ➞ increasing and changing the exposure of energy system to climate

- Relatively weak connections between energy- and climate- research. Timely to build bridges in order to:
 - Anticipate effects of future climate on energy (e.g., changes in wind, solar, temperature; frequency/severity of stress events)
 - Ensure future energy systems “solutions” are robust to climate uncertainty (e.g., design, practice & policy)

Focus: Climate & Energy Systems: Foresight days to decades ahead

Goals:
- Discuss the state-of-art (what doing now),
- Identify research needs (where do we need to go next),
- Share and exchange knowledge (supporting interactions across the “energy-climate” disciplines)

Emphasis on the broad scientific and technical challenges and opportunities

Humber Bridge, near Hull in Yorkshire (UK). Formerly the longest single-span suspension bridge in the world, started construction 1973, opened 1981.
Images www.ioshmagazine.com/humber-bridge-open-all-hours; driventowrite.com/2019/10/06/bridge-across-the-humber/#jp-carousel-55246; historicengland.org.uk/listing/the-list/list-entry/1447321
Use of "reanalysis" in energy-climate research

- Meteorological reanalyses: high quality historical weather reconstructions spanning 40-100+ years
- Underpin recent "energy reanalyses" (ECEM, URead, EMHIRES, Ninja, ...)
- Increasing use in extreme event characterization, power system planning, ...

Optimizing EU renewables (Santos-Alamillos et al 2017)

Capacity additions to maximize long-term average output

Capacity additions to minimize day-to-day variation in output
Beyond reanalysis

Climate information is more than just historical data:

- Climate simulations of increasing fidelity (e.g., CORDEX, CMIP6, PRIMAVERA)
- Huge international efforts with carefully designed protocols, curated data archives, and standardized data formats
- Growth in climate services for energy

EC Earth, hi-res simulation (from the PRIMAVERA project)

Mare Nostrum and ECMWF’s Cray (two of several leading HPC systems used for PRIMAVERA simulations)

Foresight days to decades ahead

- A massive meteorological toolkit - much of which openly available for research
- Relevant to wide range of energy-applications

Operational
(hours – days)
- Grid balancing
- Plant scheduling
- Energy trading

Tactical
(days – year)
- Energy trading
- Maintenance planning
- Early warning

Strategic
(years to decades)
- Characterising stress events/extremes
- Climate change impacts
- System/market design
Some challenges

• Understanding/quantifying climate variability and climate change
• Differences between reanalysis products and climate models
• Climate model resolution, biases, process representation
• Imperfect short-term foresight in long-term planning
Some challenges

- Understanding/quantifying climate variability and climate change
- Differences between reanalysis products and climate models
- Climate model resolution, biases, process representation
- Imperfect short-term foresight in long-term planning
- The challenge of using very large climate datasets in computationally-expensive power system models

Multi-climate-model average response to climate change

EUROCORDEX models, converted into estimates of national residual load (demand net RE) in the ECEM project

Figure from Bloomfield et al (2021)
Climate uncertainty in power system expansion planning

• “Power system expansion planning”:
 - Weather inputs (wind, solar, temp, ...)
 - Other inputs (economic, tech, social)
 - Power system Expansion planning model
 - Solution: installed wind, solar, gas, ...

Standard practice: ~few years of historic climate data as input

- **Strong evidence this is NOT robust**: different climate samples lead to very different power system ”solutions” (Hilbers et al 2019)
- **Problem magnified many times when using climate model data rather than reanalysis**
- → Currently little understanding of whether power system planning “solutions” are robust to climate uncertainty

Proposed community project:

- ClimatePrediction.net massive distributed computing framework
- Couple “climate model” to ”energy system planning model”
- Systematic, robust exploration of uncertainty in both models
- Community resource for exploratory research
- Please join us at 1600 in breakout room on Gather.Town
Format

• Day 1 programme

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker/Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>Welcome</td>
<td></td>
</tr>
<tr>
<td>1310</td>
<td>Jose Manuel Gutierrez, Cantabria University</td>
<td>Global and regional ensemble projections for risk assessment: The IPCC Interactive Atlas</td>
</tr>
<tr>
<td>1330</td>
<td>Michael Craig, Michigan University</td>
<td>Power system planning under a changing climate: recent advances and future directions</td>
</tr>
<tr>
<td>1350</td>
<td>Christian Grams, Karlsruhe Institute of Technology</td>
<td>Using Weather Regimes in Energy Meteorology</td>
</tr>
<tr>
<td>1410</td>
<td>Marta Victoria, Aarhus University</td>
<td>Multi-timescale challenges in sector-coupled energy systems</td>
</tr>
<tr>
<td>1440</td>
<td>Break</td>
<td></td>
</tr>
</tbody>
</table>
| 1500 | Research presentations (themed parallel sessions) | 1. Making the most of limited meteorological predictability
2. Climate uncertainty and power system planning
3. Weather stress events for energy
4. Added value of subseasonal-to-seasonal (S2S) forecasting
5. Renewable energy and developing markets |
| 1645 | Wrap up discussion | |
| 1700 | Official end (Gather remains open for informal networking) | |
| 1800 | Gather town closes | |

• Remind rules of engagement
 • Reminder – recording this plenary session in Zoom
 • Please mute microphones and turn off video in plenary – use the chat if wish to ask a question