

Cover crops as land management measure

Dr Andrea Momblanch

Andrea.Momblanch-Benavent@cranfield.ac.uk

16 January, NFM Programme webinar

www.cranfield.ac.uk

Supported by:

Study developed by Miyo Yoshizaki MSc in Environmental Water Management

- Supervisors:
 - Andrea Momblanch, Cranfield University Water Science Institute
 - Sarah De Baets
 - Shaun Dowman, Affinity Water Ltd Catchment Management team

- 70% of the land in England is used for agriculture
- Intensive agricultural practices contribute to soil degradation: compaction and tillage

- Increased erosion and reduced infiltration lead to higher water pollution, water scarcity and floods
- Serious problems for catchment managers

- Fast growing annuals
- Planted between cash crops
- Planted immediately after harvest
- Grow all winter
- Cover and protect the soil against erosion
- Boost soil health and reduce the negative impact of agro-management on the environment
- Die off or are destroyed in early spring to make way for the cash crop

However...

- Non-profit expense
- Additional work to grow and harvest

Assessing the effectiveness of different cover crop mixes on infiltration and soil erosion at catchment scale under current and future rainfall conditions, by:

- 1) Conducting laboratory **controlled trials**
- 2) Using experimental results to parameterise catchment scale infiltration and erosion models

River Lea Catchment in Hertfordshire

- Area = 218km²
- Managed by Affinity Water
- Cover crop scheme in ~25% of the area
- Fallow from August to January
- Soil: Clay & loam
- Slope < 5°

7

Cover crop scheme

Sub-catchments boundaries

Methodology

Facilities at Cranfield

Plant Growth Facilities

Clean water Pilot Hall

	Infiltration experiments	Erosion experiments		
Plots	1m x 1m x 80cm	30cm x 30cm x (10+20)cm		
Soil type	Sandy-clay-loam: 20% cl	ay + 52% silt + 28% sand		
Bulk density	1286 ± 35 kg m ⁻³	1168 kg m ⁻³		
Environment (during 8-9 weeks)	Glasshouse	Day time (6am-7pm): 19°C, 70% RH, 25% light intensity Night time (7pm-6am): 15°C, 82% RH		
Cover crop mixes	Seeding density & replicates			
 OTMS 50% oat (Avena sativa) 50% mustard (Sinapis alba) OTMSPH 33% oat (Avena sativa) 33% mustard (Sinapis alba) 33% phacelia (Phacelia secunda) RYMSPH 	138 seeds m ⁻² 3 replicates	900 seeds m ⁻² 3 replicates		
 33% rye (Secale cereale) 33% mustard (Sinapis alba) 33% phacelia (Phacelia secunda) 				
Bare soil	Available from previous experiments	3 replicates		

Infiltration experiments

- Device: Mini Disk Infiltrometer (Decagon Devices Inc.)
- Variable (k_h) Unsaturated hydraulic conductivity
- Test: 3 measurements per plot
 - Infiltered water volume every 30 seconds

 $I = C_1 t + C_2 \sqrt{t} \quad ; \quad \boldsymbol{k_h} = C_1 / A$

 Root collection and scanning: development and features

Erosion experiments

- Device: Sediment Erosion Flume S28 (Armfield Ltd.)
- Variables: Water depths, sediment load, turbidity, and plant features
- Test:
 - Measurements at varying discharges (0.5 to 11 l/s) every 1.5 minute
 - Water samples downstream, dried and weighted
 - Above and below ground plant features

$$\tau = \rho_w g R S \quad ; \quad v = \frac{Q}{A_{flow}} \quad ; \quad ASD = \frac{SC \ Q}{A_{plot}} = K \ (\tau - \tau_{crit})^b$$

Laboratory controlled trials - Results

Plant features

• Below ground

• Above ground

	OTMS			OTMSPH				RYMSPH			
	OT	MS		ОТ	MS	PH		RY	MS	PH	
Germination rate (%)	78	90		95	84	53		94	89	62	
Plant height (cm)	84	129		85	149	82		86	152	88	
Stem diameters (mm)	2.39	4.61		2.11	5.09	1.67	_	3.50	5.37	2.14	
Stem density (m ² /m ²)	0.00854		0.00653				0.00768				
ADB (kg/m ²)	0.59		0.61			0.65					

Laboratory controlled trials - Results

Unsaturated hydraulic conductivity (k_h)

	Bare	OTMS	OTMSPH	RYMSPH
k _h (mm month ⁻¹)	4.60 x 10 ⁻⁴	4.56 x 10 ⁻⁴	18.5 x 10 ⁻⁴	4.05 x 10 ⁻⁴
Standard deviation	-	2.08 x 10 ⁻⁴	19.6 x 10 ⁻⁴	1.49 x 10 ⁻⁴

Concentrated flow erodibility (K_c)

- K_c = Slope of the linear regression
- τ_{crit} = Intersection with horizontal axis

	Bare	OTMS	OTMSPH	RYMSPH
K _c (t ha ⁻¹ year ⁻¹)	0.029	0.019	0.005	0.017
$ au_{crit}$ (Pa)	8.1	17.6	20.6	19.8

- Critical shear stress ~ 20Pa for all mixes
- Erodibility lowest under OTMSPH mix
- Combination of flexible and stiff stems is able to attenuate the flow velocity and turbulence

- Most improved under OTMSPH mix
- Higher root density and more diverse root system structure
- Better than mono-crop

Infiltration experiments: Témez model

- Set-up:
 - Daily time step
 - Precipitation from NRFA
 - Land cover and PET from CEH
- Parametrisation:
 - H_{max} , I_{max} , C and alpha
 - Observed flows at two gauging stations (NRFA)
 - Calibration: 1980 to 2004
 - Validation: 2005 to 2015
 - Pearson's correlation coefficient (R²)

⁽Maidment, Tarboton and Catalá, 2013)

Erosion experiments: Universal Soil Loss Equation

- Set-up:
 - Annual average (over 6 fallow months)
 - Precipitation from NRFA
 - Land cover from CEH
- Parametrisation:
 - R, K, L, S, and R from European Soil Data Centre
 - P=1
 - C=1 (bare soil)
 - Evaluation based on the basis of general soil loss on cultivated land in the UK

A = R K L S C P

A: average annual soil loss
R: rainfall-runoff erosivity factor
K: soil erodibility factor
L: slope length factor
S: slope steepness factor
C: cover-management factor
P: support practice factor

Catchment scale modelling - Results

Témez model

USLE model

- Average soil erosion over fallow months in a year = 3.03 t ha⁻¹ 6months⁻¹
- Soil loss on cultivated land in UK [0.1, 20] t ha-1 year-1

Infiltration process

- The infiltration effectiveness of cover crops reflected in Imax
- Calibrated value corresponds to 0% application (baseline)
- Imax values in different coverage conditions:

$$I_{\max crop\%} = I_{\max crop\%} F_{crop\%} \quad ; \quad F_{crop a\%} = \left(\frac{k_{h ccrop}}{k_{h bare}} crop\% + (1 - crop\%)\right) farm\% + (1 - farm\%)$$

Erosion process

- According to the definition of the USLE parameters, cover crops affect the C factor
- Calibrated value corresponds to 0% application (baseline)
- C values in different coverage conditions:

 $C_{crop\ coverage} = C_{bare} (1 - crop\%) + C_{crop} crop\%$; C_{crop}

$$S_{crop} = \frac{K_{ccrop}}{K_{bare}} C_{bare}$$

Scenario analysis

	Cover crop mix	Cover crop coverage	Climate	
Scenario 0 (baseline)	-	0%	Current	
Scenario 1	OTMS	25%	Current	
Scenario 2	OTMS	100%	Current	
Scenario 3	OTMSPH	25%	Current	
Scenario 4	OTMSPH	100%	Current	
Scenario 5	RYMSPH	25%	Current	
Scenario 6	RYMSPH	100%	Current	
Scenario 7	OTMS	25%	Future	
Scenario 8	OTMS	100%	Future	
Scenario 9	OTMSPH	25%	Future	
Scenario 10	OTMSPH	100%	Future	
Scenario 11	RYMSPH	25%	Future	
Scenario 12	RYMSPH	100%	Future	

- Future climate change scenario:
 - UKCP18 RCP4.5
 - Mid and end of century projections
 - Precipitation change:
 - -55% in summer
 - +35% in winter

Scenario analysis - Results

- Most improved under OTMSPH mix
- Infiltration significantly increased in summer, especially in the future
- Erosion benefits are more significant in future conditions
- Further research:
 - More replicates in laboratory controlled experiments
 - Process-based models

Flood mitigation

- Increased infiltration + Decreased flow velocity \rightarrow Flood abatement
- However, the time scales of the processes are different → New laboratory experiments needed to test response of soil to extreme rainfall events under saturated conditions

Pollution control

Soil structure improvement

Biodiversity enhancement

Questions? Comments?

Dr Andrea Momblanch

Andrea.Momblanch-Benavent@cranfield.ac.uk

Using roots to bio-engineer soil

www.cranfield.ac.uk