NFM Webinar 15/04/21

Improving Soil Moisture Estimation Using Space Radar

Dr. Will Maslanka, Prof. Keith Morrison, Dr. Kevin White

Natural Environment Research Council

Presentation Outline

LANDWISE Project: Place of Remote Sensing

Space Based Radar Remote Sensing

Space Based Soil Moisture Observations

Linking back to NFM

LANDWISE Project

LANDWISE: **LAND** management in lo**W**land catchments for Integrated flood ri**S**k r**E**duction

Overarching Research Questions

- a) How effective are different land-based NFM measures at increasing infiltration, evaporative losses and below-groundwater storage in different locations across lowland catchments?
- b) How does the effectiveness of land-based measures vary seasonally and between years with respect to antecedent conditions, precipitation magnitude and duration?
- c) How effective are land-based measures at delivering catchment-wide water storage and infiltration, and thereby reducing runoff rates, compared to targeted approaches to reduce downstream flood (and drought) risk across different catchment scales (<100-8000km²)?

LANDWISE Project

LANDWISE: **LAND** management in lo**W**land catchments for Integrated flood ri**S**k r**E**duction

Overarching Research Questions (Simplified)

- a) How effective are different land-based NFM measures at keeping water out of the river?
- b) How does that effectiveness vary?
- c) How effective are they at reducing flood risk across different catchment scales?

LANDWISE Project

WP6: Project management and sharing knowledge

Remote Sensing - Radar

WP3 uses RADAR as it's primary remote sensing method

RADAR

RADAR echo (or **backscatter**, σ°) is a measure of returned signal.

Can be used to obtain information about an object.

- Speed of a moving car.
- Detecting aircraft.
- Amount of rain falling.
- In the case of LANDWISE, the soil moisture of the ground.

Remote Sensing - Radar

Water in the soil affects the dielectric constant of the soil Dielectric constant effectively determines the electrical properties of soil and strongly influences the intensity of the Radar backscatter coefficient, σ° .

By measuring σ° over a time period, we can estimate **relative soil moisture**, if we have a "wet" and "dry" reference σ° . Taken by finding the largest and smallest σ° values in the time series.

By measuring σ° AND surface roughness for a single observations, we can estimate the **absolute soil moisture**. By using RADAR backscatter models.

Sentinel 1 Constellation Sentinel 1A launched 2014 Sentinel 1B launched 2016

Strict 6 day repeat cycle 175 orbits per cycle

Dependable viewing geometry and spatial coverage

Frequency: 5.405 GHz

Resolution: 20 x 22m

Artists Rendition of Sentinel 1 Satellite in orbit.

Image courtesy of ESA.

More information about Sentinel 1 at www.sentinels.copernicus.eu

Coverage over the Thames Basin

Number of Sentinel 1 Orbits during 2018

Coverage over the Thames Basin

Coverage over the Thames Basin

245

Coverage over the Thames Basin

Not a matter of just looking at the raw data from the Satellite.

Data needs to be processed to remove a number of artifacts.

Processing follows the layout proposed by Filipponi (2019).

Once processing is complete, creates images like this...

Having repeat measurements of σ^o , we can compare a single scene against the largest* and smallest* backscatter values, assuming that they correspond to the driest and wettest soil values.

*don't actually use the largest and smallest, but use a statistical method to remove outliers.

Use simple formula to estimate relative surface soil moisture TU Wien backscatter model for Sentinel 1 (Hornacek et al. 2012)

• Adapted from original model (ERS scatterometer – Wagner et al. 1999)

$$m_{s}(t) = \frac{\left(\sigma^{o}(40, t) - \sigma^{o}_{d}(40)\right)}{\left(\sigma^{o}_{d}(40) - \sigma^{o}_{w}(40)\right)}$$

M. Hornacek *et al.*, "Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1," in *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 5, no. 4, pp. 1303-1311, Aug. 2012

W. Wagner *et al.*, "A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data," in *Remote Sensing of Environment*, vol. 70, iss. 2, pp. 191-207, Nov. 1999.

Having repeat measurements of σ^o , we can compare a single scene against the largest* and smallest* backscatter values, assuming that they correspond to the driest and wettest soil values.

*don't actually use the largest and smallest, but use a statistical method to remove outliers.

Use **simple** formula to estimate relative surface soil moisture TU Wien backscatter model for Sentinel 1 (Hornacek et al 2012)

• Adapted from original model (ERS scatterometer – Wagner et al. 1999)

$$m_s(t) = \frac{(Snapshot \ \sigma^o - Dry \ \sigma^o)}{(Dry \ \sigma^o - Wet \ \sigma^o)}$$

M. Hornacek *et al.*, "Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1," in *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 5, no. 4, pp. 1303-1311, Aug. 2012

W. Wagner *et al.*, "A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data," in *Remote Sensing of Environment*, vol. 70, iss. 2, pp. 191-207, Nov. 1999.

Turns backscatter images from this...

11/09/18 17:50 Sentinel 1A Orbit 132 VV

Shouldn't use original resolution, as backscatter is impacted by numerous other variables.

Concerning Vegetation	Concerning Soils
Water Content	Roughness
Crop Row Orientation	Tillage
Size	Soil Moisture
Crop Density	
Wind Bending	

... to this (1km averaging)

... to this (500m averaging)

... to this (250m averaging)

... to this (100m averaging)

But why the spatial pattern? Localised Shower

11/09/18 17:50 Sentinel 1A Orbit 132 500 m

11/09/18 14:50 – 17:50 rainfall accumulation

Relative SSM

Space Based Soil Moisture Observations

But why the spatial pattern? Localised Shower

11/09/18 17:50 Sentinel 1A Orbit 132 500 m 11/09/18 14:50 - 17:50rainfall accumulation

0.25 - 0.5 mm0.5 – 1 mm 1-2 mm 50 % 2 - 4 mm4 – 8 mm 8+ mm 26 0%

Ability to Produce Timeseries

Kennet Catchment

Catchment wide comparisons

Kennet Catchment

Sentinel 1A 11/09/18 Orbit 132

Relative SSM

100 %

Space Based Soil Moisture Observations

- Catchment wide comparisons
 - Kennet Catchment

Catchment wide comparisons

Kennet Catchment

Catchment wide comparisons

Kennet Catchment

Linking back to NFM

Overarching Research Questions (Simplified)

- a) How effective are different land-based NFM measures at keeping water out of the river?
- b) How does that effectiveness vary?

Detailed Field Survey

- Aim to better characterise field scale heterogeneity for different practices and soil parameters.
 - Take Soil Moisture observations via ground-based RADAR unit.
 - Linked with detailed field survey
 - Hand held soil moisture probes (Theta Probe)
 - Comparison with Electrical Resistivity Tomography (ERT)
 - Soil parameters via Centre of Ecology and Hydrology observations in WP2

Linking back to NFM

Rig-mounted RADAR observations

4 – 8 GHz 1m footprint High resolution scans (~mm)

Soil moisture transects across fields, aligned with ERT and Theta probe observations, as well as CEH Soil property observations

Look at soil moisture change across tram lines

Linking back to NFM

Assess how different types of land/soil properties effect soil moisture

- Floodplain Grassland vs Woodland
- Controlled Traffic vs Conventional on Chalk and Clay
- Herbal Lays vs Rye Grass

Coincide with Sentinel 1 passes

Look to scale up field scale RADAR observations to compare with catchment scale RADAR observations.

Impacted by COVID-19, but watch this space!

Presentation Summary

Introduction to LANDWISE Project

Space Based Radar Remote Sensing

Space Based Soil Moisture Observations of the Thames Basin

Briefly touched upon the WP3 elements of the long-awaited Landwise detailed fieldwork

Any Questions?

False Colour σ° of Cotswold's Water Park @ Cricklade