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Outline

❖ Introduction

❖Modelling of changing land management at catchment scale 

❖ Effectiveness of in-channel structures in reducing peak flows

❖ Detailed 1D modelling of land management changes 



• Land-based NFM measures in lowland catchments (West Thames), 

particularly groundwater-fed​

• Evaluating the effectiveness of NFM Measures​

• Identified by those who manage land ​

• Land use and management e.g. tillage practise, crop choice and tree planting​

• To increase infiltration, evaporative loss, and below ground storage​

• Using simple to novel measurement techniques​

• Field soil survey​

• Remote sensing methods to measure soil moisture​

• Multi-scale modelling​

LANDWISE project



LANDWISE project



NFM measures under consideration

• Retaining water in the landscape

• Soil water retention by managing infiltration and surface runoff

• Soil management by improving storage and percolation

• Crop choice & rotation, to increase root water uptake

• Woodlands: see above, and increased interception

• Making space for above-ground water storage & attenuation

• Water storage areas

• Riparian buffers

• River and floodplain restoration



Modelling scales

• Field scale (<10ha)

• Translatable to other areas with similar soils, landscape, land 

management, climate

• Small and medium catchments (<1000 km2)

• Provides context for various catchment types

• Large catchment (>1000 km2)

• Provides generalised knowledge





Study areas

©Loddon catchment Observatory



Field scale modelling

Basic model requirements SWAP:
• Daily detailed weather data
• Land use data (WP1&2 & literature):

• Crops: type & rotation & tillage-type
• Dates of sowing/planting & harvest
• Leaf area Index & Maximum rooting depth

• Soil profile horizons & layer thickness (NATMAP)
• Bottom boundary: ‘Free drainage’ or interaction with groundwater? 

(WP1&2/NATMAP)

Aim: Unpick how optimal 
combinations of soil type, 
land use and soil 
management can reduce 
the likelihood of flooding

Method: Multi-year 
simulation runs using the 
1-D SWAP (Soil Water 
Plant) process model

Rotations of crops, permanent grass and woodland
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• Initial focus on the Pang Catchment

• 9 years (2011-2019) of daily weather data (rainfall, 

radiation, air temperature, humidity, wind speed)

• Compare and contrast LUTs: bare soil; permanent 

grassland, different woodland types (deciduous, 
spruce, pine) 

• Inputs required on vegetation: LAI, RD, water stress 

factors

Root density profiles

Leaf Area Index

• Root water uptake affects 

evapotranspiration and soil water stores 

• LAI affects interception

• LAI and maximum RD will be scaled on 

shallower soils



Soils in Pang catchment



Soil profiles in Pang catchment

chalk

chalk

NATMAP soil information per 

series:

• Susceptibility to run-off

• Bottom boundary conditions

Per layer: 
• Texture

• Hydraulic properties

• Water retention curve

• Saturated hydraulic 

conductivity

Profiles available for arable (AR), 

ley (LEY), permanent grass (PG) 

and other (OT: woodland)



Net Precip: ANDOVER v WICKHAM
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WICKHAM, Slowly permeable, deep loamy/clayey soil
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Runoff: ANDOVER v WICKHAM
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WICKHAM, Slowly permeable, deep loamy/clayey soil
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ET: ANDOVER v WICKHAM
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WICKHAM, Slowly permeable, deep loamy/clayey soil
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Recharge: ANDOVER v WICKHAM
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Dstorage: ANDOVER v WICKHAM
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WICKHAM, Slowly permeable, deep loamy/clayey soil
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WB flows all soil series, bare soil
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SWAP SM storage capacity, layer 1
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Preliminary conclusions

• Effect of DLUT on WB fluxes larger than Dsoil hydraulic 

properties (but strong interplay between the two)

• Above-ground parameters (e.g. LAI) just as important as 

below-ground properties (rooting depth, soil properties)

• Historic LU will affect hydraulic props., and hence water 

flows

• Next steps: crops & rotations; inter-annual variation in LAI 

and RD; refinement using detailed WP1 & WP2 farm-level 

data; model sensitivity and uncertainty studies



Small to medium catchment modelling

Test of NFM scenarios



Schematic representation of SWAT

Semi-distributed model

Three levels: basin, subbasin 

and hydrological response unit 

(HRU)

Two aquifers: one shallow 

aquifer (unconfined) and one 

deep aquifer (confined)



Blackwater catchment

Area = 358 km2



❖ Simultaneous multisite calibration

ly ly lyFC AWC WP= +
.

0.40.
100

c b
ly

m
WP


=

❖Modification of the SWAT model source code 

✓ Water content at wilting point

✓ Muskingum method: to discretize daily evaporation and sum up transmission 
losses in case of numerical instability

Modelling approach

❖ Sensitivity and uncertainty analysis

▪ Latin hypercube sampling (10 000 samples)

▪ 95% prediction uncertainty



Model performance 1/3

✓ Better modelling results obtained with EA rainfall 
and NATMAP soil datasets

✓ Issues with baseflow and peak flow estimation for 
Hart and Blackwater at Farnborough



Model performance 2/3



Model performance 3/3



CN2: SCS curve 

number

ESCO: Sol evaporation 

compensation factor

RCHRG_DP: Deep aquifer 

percolation fraction

GWQMN: threshold depth 

of water in the shallow 

aquifer required for return 

flow to occur

Model verification 1/2

Parameter verification from density curves



Model verification 2/2

Processes verification

Spatio-temporal variability of generated surface runoff (SURQ_GEN) and groundwater 

recharge (GW_RCHRG) within the Blackwater catchment



▪ Reduction peak flows from 0 to 56% (median = 26%) at Swallowfield 

with only 10 to 14% for the major events

▪ Reduction peak flows from 0 to 59% (median = 20%) at Farnborough

Test of NFM scenarios (Unrealistic)

Scenario 1: all land cover to deciduous forest except water and urban areas



▪ Reduction from 2 to 70% (median = 24%) at 

Holdshot Farm

▪ Reduction from 1 to 68% (median = 22%) at 

Bramshill House

▪ Reduction from 5 to 60% (median = 22%) at 

Lodge Farm

Scenario 1

Test of NFM scenarios (Unrealistic)



▪ Increase of peak flows 0 to 37% (median = 10%) at Swallowfield

Scenario 2: all land cover to agricultural land except water and urban areas

Test of NFM scenarios (Unrealistic)

▪ Increase of 0 to 37% (median = 10%) at Swallowfield



▪ Increase of peak flow from 0 to 13% (median 

= 2%) at Lodge Farm

▪ Increase of of peak flow from 0 to 40% 

(median = 3%) at Holdshot Farm

▪ Increase of of peak flow from 0 to 50% 

(median = 4%) at Holdshot Farm

Test of NFM scenarios (Unrealistic)
Scenario 2



Partial conclusion and outlook

❖Modelling the NFM in selected catchments is challenging due to the 

complexity of the hydrological system

❖ Integration additional and comparison with other model setups

❖Modelling of realistic scenarios



Two Dimensional (2D) 

Domain
▪ Digital Terrain Model (xm)

▪ Land Cover (Change in Landcover?)

▪ Catchment Rainfall / Hydrological Input

▪ Hydrological Losses - spatial distribution 

of soil condition (infiltration vs runoff 

generation)

ryan.jennings@jbaconsulting.com



Direct runoff 
and losses 2D 
model

Direct insertion of hydraulic unit 
into 2D mesh

Poor quality DTM in headwater

Modelling some Leaky Barriers -

Q-NFM

ryan.jennings@jbaconsulting.com



Modelling some RAFs - Belford – JBA

Quantifying and simulating the impact of flood mitigation features in a small rural

catchment

(Nicholson et al., 2013)
ryan.jennings@jbaconsulting.com



Modelling changes to floodplain storage: 

e.g. Eddleston Water - JBA

▪ Change in depth grids and floodplain 

storage for 30 year event

ryan.jennings@jbaconsulting.com



Conclusions are that yes finer features 
can be represented but that requires 
more parameters to calibrate (inlet 
losses, weir, friction and porosity 

coefficients) and in a large model can 
make for more instability. More 
pragmatic at large scale to use 
published ranges of Manning’s

Representation of NFM –

Broad-scale vs fine-scale

▪ Broader scale 

requires further 

uncertainty analysis

▪ Change in depth grids 
and floodplain storage 

for 30 year event

Changes represented as roughness as per 

Dixon in Addy (2019)

Changes 

represented as 
hydraulic units –
requires time step 

reduction to control 
Instability

ryan.jennings@jbaconsulting.com



River Leck (Buckingham) – JBA
▪ Topographic Survey 2019 – Applied into DTM as blockage across 

channel at survey dimensions

▪ JFlow culvert unit applied to act as baseflow gap at survey dimensions

ryan.jennings@jbaconsulting.com



Bourne (Pangbourne) – JBA

Pang Valley Flood Forum (PVFF) (2018)

▪ 22 Leaky Barriers applied to channel

▪ Next Steps (As built information?)

Gabby Powell et al (2020)
ryan.jennings@jbaconsulting.com


