Quantifying the impact of blanket-peat re-vegetation & gully-blocking in terms of their NFM potential

Webinar Series

20th August 2020

Salim Goudarzi, David Milledge
& the team

The University of Manchester
NERC
Newcastle University
Content

• Before-After-Control-Intervention (BACI) experiment
• Findings of the BACI experiment
• Motivations of the numerical work
• Brief introduction of numerical procedure
• Numerical experiment #1: Impact of restorations, and their variation with storm size
• Numerical experiment #2: Underlying processes, and their variation with storm size
• Does NFM always work?
• Conclusions & Future Work
Content

- Before-After-Control-Intervention (BACI) experiment
- Findings of the BACI experiment
- Motivations of the numerical work
- Brief introduction of numerical procedure
- Numerical experiment #1: Impact of restorations, and their variation with storm size
- Numerical experiment #2: Underlying processes, and their variation with storm size
- Does NFM always work?
- Conclusions & Future Work
Location of study sites

Bare peat

Deep gully
BACI Experiment

CR: control site
RV: re-vegetated site
RG: re-vegetated & gully-blocked site

- **Outlet**
- **Block location**

For comparison: a standard football pitch is 7,140 m²

all satellite images are recent (2020)
Rapid restoration success

stone dams
2010
re-vegetation
2014
timber dams

2011
re-vegetation &
gully-blocking
2018
Content

• Before-After-Control-Intervention (BACI) experiment
• Findings of the BACI experiment
• Motivations of the numerical work
• Brief introduction of numerical procedure
• Numerical experiment #1: Impact of restorations, and their variation with storm size
• Numerical experiment #2: Underlying processes, and their variation with storm size
• Does NFM always work?
• Conclusions & Future Work
BACI Observations

*Data extracted from Shuttleworth et al. (2019)
**all values relative to control site

Relative OFQ = portion of dipwell tubes recording overland flow, relative to control site
BACI Observations

Data extracted from Shuttleworth et al. (2019)

all values relative to control site

Relative peaks post treatment

Relative lags post treatment

Data extracted from Shuttleworth et al. (2019)

all values relative to control site
Surface Storage

<table>
<thead>
<tr>
<th>Static (immobile) surface storage</th>
<th>Dynamic (mobile) surface storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interception storage</td>
<td>“flow storage”</td>
</tr>
<tr>
<td>Block storage</td>
<td></td>
</tr>
</tbody>
</table>

- Smoother surface = faster flow
- Faster flow = less accumulation
- Rougher surface = slower flow
- Slower flow = more accumulation
BACI Observations

Data extracted from Shuttleworth et al. (2019)
**all values relative to control site
Content

• Before-After-Control-Intervention (BACI) experiment
• Findings of the BACI experiment
• Motivations of the numerical work
• Brief introduction of numerical procedure
• Numerical experiment #1: Impact of restorations, and their variation with storm size
• Numerical experiment #2: Underlying processes, and their variation with storm size
• Does NFM always work?
• Conclusions & Future Work
Summary of knowns

• Water tables rise
• Hillslope storage is reduced
• Overland flow production is enhanced
• Lags increase and peaks reduce
• Dynamic storage is more important
• Roughness is more important
• Gully-blocking impact is significant

Questions to answer

• Is dynamic storage always more important?
• How much more important is dynamic storage?
• What about evapotranspiration?
• Do these findings hold for all storm sizes?
• Potential importance of different sources of uncertainty: rainfall, topography
• Are there situations where NFM won’t work?
Content

• Before-After-Control-Intervention (BACI) experiment
• Findings of the BACI experiment
• Motivations of the numerical work
• Brief introduction of numerical procedure
• Numerical experiment #1: Impact of restorations, and their variation with storm size
• Numerical experiment #2: Underlying processes, and their variation with storm size
• Does NFM always work?
• Conclusions & Future Work
Schematic of the numerical procedure

- **Period X**
 - **re-veg. site (RV)**
 - **blocked site (RG)**

Numerical Model (TOPMODEL)

Calibrate

RV site:
- Dynamic surface storage
- Evapo-transpiration rate
- Static surface storage

RG site:
- Dynamic surface storage
- Evapo-transpiration rate
- Static surface storage
Pre-intervention period (2010)
Post-intervention period (2012)

- control (CR)
- reveg. (RV)
- reveg&blocked (RG)
- rainfall
Content

• Before-After-Control-Intervention (BACI) experiment
• Findings of the BACI experiment
• Motivations of the numerical work
• Brief introduction of numerical procedure
• Numerical experiment #1: Impact of restorations, and their variation with storm size
• Numerical experiment #2: Underlying processes, and their variation with storm size
• Does NFM always work?
• Conclusions & Future Work
Numerical experiment #1: “Virtual Twin”

- Fix topography
- Fix rainfall

Numerical Model (TOPMODEL)

- pre-RV parameters
- post-RV parameters
- pre-RG parameters
- post-RG parameters

predict discharge & compare

discharge
Numerical experiment #1: “Virtual Twin”

Largest storms ➡️

Most complex storm ➡️

RV: re-vegetated site
RG: re-veg. & gully-blocked
Variation with storm size

Across all 20 peaks, mean discharge reduction due to:
- revegetation was 34%
- revegetation & gully blocking was 43%

Across all 20 peaks, mean of lag-time increase due to:
- revegetation was 0.62 hr
- revegetation & gully blocking was 0.8 hr
Comparison with observations

Modelled

- re-veg
- re-veg & blocked
- modelled

Not modelled

1% = 5.3 Lit s⁻¹ km⁻²
Content

- Before-After-Control-Intervention (BACI) experiment
- Findings of the BACI experiment
- Motivations of the numerical work
- Brief introduction of numerical procedure
- Numerical experiment #1: Impact of restorations, and their variation with storm size
- Numerical experiment #2: Underlying processes, and their variation with storm size
- Does NFM always work?
- Conclusions & Future Work
Numerical experiment #2: “Parameter Switch”

Fix topography

Fix rainfall

Numerical Model (TOPMODEL)

re-vegetated site (RV)
all parameters, except one, at pre-treatment value

predict discharge & compare

re-veg. & blocked site (RG)
all parameters, except one, at pre-treatment value

Evapo-transpiration
Parameter shares in peak reduction

- re-veg. (RV)
- re-veg. & blocked (RG)

Graphs:
- x-axis: Peak Discharge [m³/s]
- y-axis: Share of discharge change [%]
- Colors represent different parameters:
 - Velocity (dynamic storage)
 - Evapotranspiration
 - Static storage

Legend:
- post-RV
- post-RG
- pre-RV
- pre-RG
Parameter shares in lag increase

- re-veg. (RV)
- re-veg. & blocked (RG)

Graphs showing the share of timing change [%] against peak discharge [m³/s] for velocity (dynamic storage), evapotranspiration, and static storage. The graphs compare data before (pre-RV, pre-RG) and after (post-RV, post-RG) re-vegetation and blocking events.
Content

• Before-After-Control-Intervention (BACI) experiment
• Findings of the BACI experiment
• Motivations of the numerical work
• Brief introduction of numerical procedure
• Numerical experiment #1: Impact of restorations, and their variation with storm size
• Numerical experiment #2: Underlying processes, and their variation with storm size
• Does NFM always work?
• Conclusions & Future Work
Does NFM always work?

(a) RV: re-veg.
RG: re-veg. & blocked

(b) obs Q
pre-RV
post-RV
pre-RG
post-RG
rain

Discharge [m³/s]

Time [hrs] since 1st October 2010

Rainfall [mm]

Discharge [m³/s]

Time [hrs] since 3rd October 2010
Duration of peak rainfall intensity

peak #1

peak #3

Oct 01

Oct 03

Rainfall [mm]

Discharge [m3/s]

0
0.5
1
1.5
0
0.005
0.01
0.015
0
0
0
0
10:00 10:30 11:00 11:30 12:00 12:30 13:00

07:00 07:30 08:00 08:30 09:00 09:30 10:00

10 min

70 min

[Legend]

- rain
- obs Q
- pre-RV
- post-RV
- pre-RG
- post-RG
Conclusions

- Modelling supports the BACI findings that peaks are reduced and lags increased by re-vegetation and gully-blocking.
- Roughness, both due to re-vegetation and gully-blocking, introduces dynamic (mobile) surface storage that is:

 1. the most important delivery mechanism for the observed intervention impacts
 2. independent of storm size
- Storm properties can strongly alter the discharge reduction of interventions, although not their lag increase.
Future work

- Depth dependent surface velocity
- What happens when you scale up?
- How do the intervention effects change over time?