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Packages

Accompanying script/data: https://tinyurl.com/BayesianISB14

R script: verissimo_ISB14.R

Packages required to run the accompanying script:

·

·

·

library(lme4)
library(brms)

library(ggplot2)
library(ggeffects)
library(ggdist)
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Background



Bayesian vs. frequentist

Bayesian approaches are usually presented in opposition to frequentist ones·

In statistics proper, there is a debate about the two frameworks
(about substantial, even philosophical, issues)

·
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Bayesian vs. frequentist

This session takes a more pragmatic stance

Bayesian statistics often allow us to do more things

And to do them within an integrated (conceptual and technical) framework

·

·

·
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Two trends in data analysis
Kruschke (2018)

NHST: Null Hypothesis Significance Testing

MLE: Maximum Likelihood Estimation

“The New Statistics”: Book/paper by Geoff Cumming (2011, 2014)
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Bayesian vs. frequentist

The goal of this session is not to ‘convert’ people

There are certainly many reasonable applications of hypothesis testing and of
frequentist statistics

·

·

The goal is to introduce you to a framework and associated tools …·

… which I believe have substantial advantages over the more traditional
statistical approaches

·
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Some advantages of Bayesian statistics

Solves (or at least, ameliorates) some long-standing problems with NHST

Facilitates a focus on estimation and uncertainty when assessing effects

Provides more conceptually sound statistical inference

Allows bringing in prior information into the modelling

Facilitates modelling of variance components

Greater flexibility: every quantity can be directly compared to any other

Accommodates many different distribution families

Robustness to noise and extreme values

Allows assessing evidence for null values

·

·

·

·

·

·

·

·

·
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Problems with NHST

* Or better said: NHST and the way it is employed is known to have important problems

Despite the wide adoption of frequentist statistics, it is known to have
important problems*

·
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Problems with NHST

A first problem with NHST is its emphasis on binary decisions

Binary decisions (‘effect’ vs. ‘no effect’) …

·

·

Impoverish our statistical inferences

Encourage the application of mechanical, mindless, and dogmatic
procedures

-

-
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Problems with NHST

“The dogmatism has lasted for almost half a century. This is far too long. We
need a knowledgeable use of statistics, not a collective compulsive obsession.”
(Gigerenzer, 1993)

·

“Do not replace the dogmatism by a new, altogether different one
(e.g., Bayesian dogmatism).” (Gigerenzer, 1993)

·
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Fundamental Bayesian principles



Three Bayesian principles

1. Parameters as full probability distributions

2. Bayesian posteriors give us the probability of the different values of a
parameter, given the data

3. Beliefs are updated through the integration of prior knowledge
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Parameters as full distributions

Bayesian estimates are not single fixed values
(e.g., “the regression slope of the difference between means is 70ms”)

Estimates of parameters are full probability distributions over a range of values

·

·
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Parameters as full distributions

Examples of posterior distributions: (a) regression intercept and (b) slope.
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Your first Bayesian model

The data for this example comes from a study with L2 learners in which
morphological priming was predicted by age of onset of L2 acquisition (AoA)
(Veríssimo et al., 2018, Lang Acq)

Participants were presented with 50ms subliminal primes that were
morphologically related to a target word
(to which a lexical decision was made)

There were three types of prime words (in German, actually):

·

·

·

Inflectional: e.g., boiled–BOIL

Derivational: e.g., boiler–BOIL

Unrelated: e.g., parked–BOIL

-

-

-
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Load the data

priming.aoa <- readRDS("verissimo2018_aoa5.rds")
head(priming.aoa)

##    Subject Inf.Priming AoA.Ger
## 33     501    -105.819       5
## 34     502     104.011       5
## 35     503     -17.621       6
## 36     504      30.501       5
## 37     505     146.580       5
## 39     507      28.804       5
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Dataset

To simplify, data has been reduced and aggregated:

This is a subset of 47 subjects (those with AoA>5)
(the paper reported a more complex non-linear pattern on a larger dataset)

By-participant means and priming effects were calculated:
Inf.Priming = RT(Unrelated) - RT(Inflectional)

Aggregation was done on logged RTs and back-transformed to ms
(to yield a more-or-less normal distribution)

We’ll perform a simple regression, no covariates

·

·

·

·

·
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Frequentist and Bayesian models

1. We will first run a frequentist linear regression,
in which we predict inflectional priming from AoA

2. We will then run a Bayesian linear regression model
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Frequentist model
Linear regression

c. <- function(x) scale(x, scale=F)                             # Centering function
summary(m.freq <- lm(Inf.Priming ~ c.(AoA.Ger), priming.aoa))   # Model

## 
## Call:
## lm(formula = Inf.Priming ~ c.(AoA.Ger), data = priming.aoa)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -164.83  -30.53    3.08   39.46  235.79 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     6.45      10.52    0.61    0.543  
## c.(AoA.Ger)    -3.65       1.42   -2.57    0.014 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 72.1 on 45 degrees of freedom
## Multiple R-squared:  0.128,  Adjusted R-squared:  0.108 
## F-statistic:  6.6 on 1 and 45 DF,  p-value: 0.0136
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Frequentist model
Plot of fitted values

ggemmeans(m.freq, terms = "AoA.Ger") |> plot()
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Bayesian model

This will be very simple to set up·

We will use the brms package (Bürkner, 2017)

Its function brm() allows fitting Bayesian regression models

It takes the same kind of formulas as lm() or lmer()

-

-

-

However, one may run into memory problems or other difficulties…
(the model has already been fitted and can be loaded and inspected)

·

Also: A real Bayesian analysis would require a few more steps!·
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Bayesian model

summary(m.bay <- brm(Inf.Priming ~ c.(AoA.Ger),
                     data = priming.aoa))

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: Inf.Priming ~ c.(AoA.Ger) 
##    Data: priming.aoa (Number of observations: 47) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     6.55     10.46   -14.40    26.33 1.00     3362     2625
## c.AoA.Ger    -3.63      1.43    -6.48    -0.85 1.00     3750     2711
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma    72.67      7.89    59.35    90.24 1.00     3317     2828
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
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Parameters as full distributions

The reported estimate is just the mean of the full probability distribution

The distribution is made up of samples that are collected during the fitting process
(4,000 samples, in this case)

We can obtain them as such (note that fixed effects are prefixed with ‘b_’):

·

·

·

(ps <- as_draws_df(m.bay))          # Posterior samples for every parameter

## # A draws_df: 1000 iterations, 4 chains, and 5 variables
##    b_Intercept b_c.AoA.Ger sigma lprior lp__
## 1         20.8        -4.0    58   -9.9 -276
## 2         17.6        -2.5    63  -10.0 -274
## 3         16.0        -2.1    70  -10.1 -274
## 4         16.1        -1.8    72  -10.2 -274
## 5          8.9        -4.9    72  -10.2 -273
## 6         16.2        -3.2    72  -10.2 -273
## 7        -12.2        -4.6    69  -10.2 -275
## 8        -12.5        -6.2    70  -10.2 -276
## 9        -11.5        -6.0    83  -10.5 -276
## 10         3.6        -4.2    68  -10.1 -273
## # ... with 3990 more draws
## # ... hidden reserved variables {'.chain', '.iteration', '.draw'}
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Posterior distributions

This is the posterior distribution of the parameter

It is very informative about the possible values of parameters:

·

·

ggplot(ps, aes(x=b_c.AoA.Ger)) + theme_bw() +
  geom_density(fill="lightblue")
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Posterior distributions, estimation,
and uncertainty



Three Bayesian principles

1. Parameters as full probability distributions

2. Bayesian posteriors give us the probability of the different values of a
parameter, given the data

3. Beliefs are updated through the integration of prior knowledge

28/83



Another problem with NHST

The p-value is often incorrectly interpreted

Often interpreted as the probability that  is true

·

· H0

Or as the probability that a (rather unspecified) alternative hypothesis is true
( )

·
= 1 − p

p-values do not provide such probabilities·
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Two types of conditional probability

These two questions are very different:·

“Given that  is true, what is the probability of obtaining this data?”

“Given that we have obtained this data, what is the probability of ?”

- H0

- H0

Our puny human brains have trouble with this distinction
(even if we’re scientists)

·
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So what are p-values?

A p-value is the probability of obtaining this data (or more extreme), assuming
that the null hypothesis is true:

·

P (D|H0)

This is quite different from what we would like to know: the probability of
certain hypotheses or parameter values, given the obtained data:

·

P (H0|D)
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The ‘Bayes’ in ‘Bayesian’
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Bayes’ theorem
Thomas Bayes (1763)
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Posterior distributions
As probabilities of parameter values

ggplot(ps, aes(x=b_c.AoA.Ger)) + theme_bw() +
  geom_density(fill="lightblue")
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Posterior distributions and uncertainty

Such posterior probability distributions formalise our uncertainty!·

If they are very wide, many values are possible (we simply do not know)·

If they are very narrow, we can be confident that the ‘true’ value is inside a
small region of possible values

·
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Credible intervals

Bayesian statistics provides credible intervals, not confidence intervals

They can be easily obtained as such:

·

·

posterior_summary(ps$b_c.AoA.Ger)

##      Estimate Est.Error   Q2.5   Q97.5
## [1,]   -3.635    1.4287 -6.483 -0.8467

They can be reported as such:
“an effect of AoA of -3.63ms per year, 95% CrI [-6.48, -0.85]”

·
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Credible intervals

The ggdist package is particularly good for visualising posterior distributions
and their credible intervals:

·

ggplot(ps, aes(x=b_c.AoA.Ger)) + theme_bw() +
  stat_halfeye(point_interval = mean_qi, .width = c(.025, .975),
               fill="lightblue", interval_color="black", interval_size=5, point_size=4)
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Credible intervals

There is a 95% probability that the true value (of a mean, a slope, etc.) is inside
the 95% credible interval

·

This is usually how confidence intervals are interpreted, but wrongly so
(because frequentist statistics does not allow computing probabilities of
parameter values)

·
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So … is there an effect?

From the point of view of estimation, this is not the right question

Asking whether “there is an effect” reduces such statements about
magnitudes and probabilities to a simple directional statement: AoA effect < 0

Instead (or additionally), we are interested in quantifying the probabilities of
different magnitudes of the AoA effect on inflectional priming

·

·

·
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Emphasis on estimation

The most probable effect of AoA is a reduction of inflectional priming by 3.6ms
per year, with a 95% probability that this reduction is within -6.48 and -0.85.

The most probable values for the slope of AoA are negative; thus, it is very
likely that each year of AoA reduces inflectional priming by a few ms.

The magnitude of this effect is likely to be relatively large: a person who
learned German 10 years later than another is expected to show a substantial
reduction in inflectional priming (which is about 30–40ms in L1):

·

·

·

posterior_summary(ps$b_c.AoA.Ger * 10)

##      Estimate Est.Error   Q2.5  Q97.5
## [1,]   -36.35    14.287 -64.83 -8.467

At the same time, it is possible (but unlikely) that the true effect will turn out to
be quite small (<0.8ms/year, with ~2.5% probability)

·
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Bringing in prior knowledge



Three Bayesian principles

1. Parameters as full probability distributions

2. Bayesian ‘posteriors’ give us the probability of the different values of a
parameter, given the data

3. Belief updating through the integration of prior knowledge
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Prior knowledge

Determining the probability of a hypothesis or of a parameter value from the
data (e.g., that ) …

·
A − B = 20ms

… depends critically on how likely this estimate is a priori, independently of
the data

·
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Priors, likelihood, posteriors

Just as posterior beliefs are full probability distributions, so are prior beliefs·

And so is the ‘current evidence’, also called the likelihood·
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Prior knowledge
We already use it!

How much would you believe the following (made-up) claims?·

IQ is lower in bilinguals, compared to monolinguals ( )

Risk of dementia is halved in bilinguals, compared to monolinguals (
)

There is no difference in reading times between congruent and
incongruent words in the color Stroop task ( , n.s.)

- p < .05

-
p < .05

-
p > .05
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Prior knowledge
We already use it!

Outcomes that are obvious or expected (because they are more consistent
with previous evidence) are more believable as general claims

·

Outcomes that are surprising, unexpected, or that clearly challenge previous
evidence are less believable as general claims

·
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Prior knowledge
We already use it!

We already bring our prior knowledge into play when inferring from results!·

Bayesian statistics requires us to formalise our prior knowledge ….·

… and integrates it into the statistical analysis·
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Informativity of priors

Note: A truly informative prior might be centered elsewhere, rather than at 0
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Priors, likelihood, posteriors

Strong prior, weak data·

The influence of the prior is much larger when the likelihood is weak
(i.e., when the data is very variable or from small samples)

In such cases, the prior ‘compensates’ for the noise in the data

-

-
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Priors, likelihood, posteriors

Weak prior, strong data·

The influence of the likelihood is much larger when the prior is ‘weak’

In such cases, our previous beliefs are not very constraining

We admit many possibilities and let the data ‘speak for itself’

-

-

-

Extraordinary claims require extraordinary evidence·
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Which priors are available?

The prior_summary() function extracts priors from fitted models:·

prior_summary(m.bay)

##                  prior     class      coef group resp dpar nlpar lb ub
##                 (flat)         b                                      
##                 (flat)         b c.AoA.Ger                            
##  student_t(3, 7.4, 49) Intercept                                      
##    student_t(3, 0, 49)     sigma                                  0   
##        source
##       default
##  (vectorized)
##       default
##       default

We can see that flat priors (i.e., non-informative) were used for the slope·
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Could priors help our inference?

The effect of AoA on priming is quite large, perhaps implausibly so·

ggemmeans(m.bay, terms = "AoA.Ger") |> plot(add.data=T)

In particular, the model predicts large inhibitory effects, which are not likely from a 50ms short-
duration prime

·
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Defining priors

Perhaps our inferences can be improved by using a more constraining prior …

The response variable (inflectional priming) is in ms, so priors should express
the effects that we would expect to see in ms units
(per year of AoA, in the case of the slope)

·

·
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Model with stronger priors

We start be defining our stronger prior on the regression slope:·

(priors.strong <- c(prior(normal(0, 250), class=Intercept),
                    prior(normal(0, 2.5), class=b),
                    prior(normal(0, 250), class=sigma)))

##           prior     class coef group resp dpar nlpar   lb   ub source
##  normal(0, 250) Intercept                            <NA> <NA>   user
##  normal(0, 2.5)         b                            <NA> <NA>   user
##  normal(0, 250)     sigma                            <NA> <NA>   user

And fit the new model:·

m.bay.strong <- brm(Inf.Priming ~ c.(AoA.Ger), priming.aoa,
                    prior = priors.strong,
                    sample_prior = "yes",
                    file = "m-bay-strong.rds")
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Is the stronger prior justifiable?

A Normal(0, 2.5) prior is a Normal distribution with an SD of 2.5

We know what the properties of such a distribution are:
on a Normal, 95% of the mass is between the mean plus or minus 2 SDs

So we are effectively saying that it is quite likely, a priori (with 95% probability)
that the effect of AoA on inflectional priming is of up to 5ms per year

Given the documented differences between L1 speakers and late learners, this
seems appropriate

·

·

·

·
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Model with strong priors

fixef(m.bay.strong)

##           Estimate Est.Error     Q2.5    Q97.5
## Intercept   6.3428   10.8218 -15.4992 27.84784
## c.AoA.Ger  -2.6936    1.2878  -5.2012 -0.14203
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Regression line (w/ strong priors)

line.flat <- ggemmeans(m.bay, terms = "AoA.Ger")
ggemmeans(m.bay.strong, terms = "AoA.Ger") |> plot() +
  scale_y_continuous(limits = c(-125, 125)) +
  geom_line(data=line.flat, aes(y=predicted, x=x), col="red")
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How do we choose priors?

General knowledge about sizes of effects in our field

Specific knowledge about task, measure, population, …

Meta-analyses of similar effects

Effects from similar studies or pilot data

Other general guidelines:
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

·

·

·

·

·
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Do priors ‘influence’ the interpretation?

Yes… and there’s nothing wrong with that!·

We do possess such prior knowledge and it is already implicitly used when we
interpret results

·

Priors are defined transparently and can be reasonably discussed·

They should be justified, like any other aspect of data analysis·

Remember that the goal is to arrive at the best and most generalizable
inference… not the best inference for this sample!

·
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Some advantages of Bayesian statistics

Solves (or at least, ameliorates) some long-standing problems with NHST

Facilitates a focus on estimation and uncertainty when assessing effects

Provides more conceptually sound statistical inference

Allows bringing in prior information into the modelling

Facilitates modelling of variance components

Greater flexibility: every quantity can be directly compared to any other

Accommodates many different distribution families

Robustness to noise and extreme values

Allows assessing evidence for null values

·

·

·

·

·

·

·

·

·
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Example of mixed-effects model



Load data

head(priming.lmm <- readRDS("verissimo_cunnings_inprep.rds"))

##   Participant PrimeType    Prime  Target  RT
## 1  1649318400 Inflected    tuned    TUNE 691
## 2  1649318400   Control   mocked   SKATE 760
## 3  1649318400 Inflected   marked    MARK 863
## 4  1649318400   Derived defender  DEFEND 619
## 5  1649318400 Inflected lectured LECTURE 601
## 6  1649318400   Control  chopped   TOAST 634
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Dataset

This is a different dataset, but again, the data comes from a morphological
priming study with L2 learners (conducted w/ Ian Cunnings)

Participants were presented with overt visual primes (250ms) that were
morphologically related to a target word (to which a lexical decision was
made)

There were again three types of prime words (in English):

·

·

·

Inflectional: e.g., boiled–BOIL

Derivational: e.g., boiler–BOIL

Unrelated: e.g., parked–BOIL

-

-

-
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Number of responses by participant

with(priming.lmm, table(Participant, PrimeType)) |> head(10)

##             PrimeType
## Participant  Control Derived Inflected
##   1649318400      26      32        32
##   1649318423      26      33        30
##   1649318445      29      29        30
##   1649318493      32      34        33
##   1649318535      22      32        27
##   1649318542      31      30        31
##   1649318589      25      30        31
##   1649318594      17      25        26
##   1649318742      34      33        34
##   1649318832      33      34        33
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Frequentist LMM
Fixed effects

We predict response times (RTs) on the basis of PrimeType (unrelated,
inflected, derived)

·

lmm.freq <- lmer(RT ~ (1 + PrimeType | Participant) + 1 + PrimeType, priming.lmm)

## boundary (singular) fit: see help('isSingular')

summary(lmm.freq)$coefficients

##                    Estimate Std. Error t value
## (Intercept)         721.654    11.6714  61.831
## PrimeTypeDerived    -75.339     7.0454 -10.693
## PrimeTypeInflected  -72.321     6.9154 -10.458
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Frequentist LMM
Random effects

VarCorr(lmm.freq)

##  Groups      Name               Std.Dev. Corr     
##  Participant (Intercept)         70.89            
##              PrimeTypeDerived     9.98   1.00     
##              PrimeTypeInflected   4.43   1.00 1.00
##  Residual                       180.45
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Bayesian LMM
Model on raw RTs

lmm.bay <- brm(RT ~ 1 + PrimeType + (1 + PrimeType | Participant), priming.lmm,
               cores=4,                       # In parallel (1 chain per core)
               file = "lmm-bay.rds")
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Bayesian LMM
Fixed effects

summary(lmm.bay)$fixed[1:4]

##                    Estimate Est.Error l-95% CI u-95% CI
## Intercept           721.380   12.5846  695.761  745.977
## PrimeTypeDerived    -75.692    6.8864  -88.994  -61.815
## PrimeTypeInflected  -72.571    7.0394  -86.284  -58.987

68/83



Bayesian LMM
Plot of fitted values

ggemmeans(lmm.bay, terms = "PrimeType") |> plot()
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Bayesian LMM
Random effects

summary(lmm.bay)$random$Participant[1:4]

##                                           Estimate Est.Error l-95% CI u-95% CI
## sd(Intercept)                            77.221691   9.26050 61.40237 97.63482
## sd(PrimeTypeDerived)                      9.361012   6.58128  0.47353 24.23401
## sd(PrimeTypeInflected)                    9.850555   7.40936  0.34747 27.21504
## cor(Intercept,PrimeTypeDerived)           0.294424   0.44175 -0.70333  0.92874
## cor(Intercept,PrimeTypeInflected)         0.024114   0.44576 -0.78759  0.85871
## cor(PrimeTypeDerived,PrimeTypeInflected)  0.178683   0.49102 -0.79847  0.92439
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Bayesian LMM
Residuals

summary(lmm.bay)$spec_pars[1:4]

##       Estimate Est.Error l-95% CI u-95% CI
## sigma   180.48    2.0022   176.57   184.53
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Estimating variance components

One important advantage of Bayesian models is that one can better estimate
the different variance components (i.e., the random effects)

·

This is especially the case for the correlation parameters·

This means that more complex models can be fitted, with less errors of
convergence (especially important when fitting maximal models)

·

Moreover, all random effect parameters can be accompanied by credible
intervals (in fact, by full posteriors)

·
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Comparison of variance components

Is there more between-subject variance for one type of prime or the other?

We can even compare different variance components to answer questions
like:

·
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Comparison of variance components

Is there more between-subject variance for one type of prime or the other?

We can even compare different variance components to answer questions
like:

·

We simply subtract the posterior samples to obtain their comparison:·

ps <- as_draws_df(lmm.bay)          # Posterior samples for every parameter
(ps$sd_Participant__PrimeTypeDerived - ps$sd_Participant__PrimeTypeInflected) |>  # Subtraction of estimates
  posterior_summary()

##      Estimate Est.Error   Q2.5  Q97.5
## [1,] -0.48954    8.8455 -18.43 16.529
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Some advantages of Bayesian statistics

Solves (or at least, ameliorates) some long-standing problems with NHST

Facilitates a focus on estimation and uncertainty when assessing effects

Provides more conceptually sound statistical inference

Allows bringing in prior information into the modelling

Facilitates modelling of variance components

Greater flexibility: every quantity can be directly compared to any other

Accommodates many different distribution families

Robustness to noise and extreme values

Allows assessing evidence for null values

·

·

·

·

·

·

·

·

·
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Posterior predictive checks

One important model diagnostic in the Bayesian framework is the posterior predictive check

We simulate data from the model and compare the simulated datasets to what we have obtained

·

·

pp_check(lmm.bay, ndraws = 100)

This is a particularly bad model … the reason is that RTs are not normally distributed·
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Many different distribution families

RTs (or fixation times): Lognormal, shifted lognormal, ex-Gaussian …
(see Ciaccio & Veríssimo, 2022, PB&R)

Accuracy (or other nominal variables): Binomial, Bernoulli, …
(see Lago et al., 2022, Lang Learning)

Ratings (or other ordinal variables): Cumulative ordinal models
(see Veríssimo, 2022, BLC)

Measures with many outliers: t distribution, …

RTs + accuracy: Wiener model, …

Fixation times + probability of fixation: Hurdle lognormal, …

·

·

·

·

·

·
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Two trends in data analysis
Kruschke (2018)

NHST: Null Hypothesis Significance Testing

MLE: Maximum Likelihood Estimation

“The New Statistics”: Book/paper by Geoff Cumming (2011, 2014)
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Bayesian hypothesis testing

It can (and often should) be performed

Avoid testing hypothesis by looking at whether the credible interval crosses
zero or not

Better procedures exist:

·

·

·

Bayes Factors (Lee & Wagenmakers, 2013)-

ROPE: Region of practical equivalence (Kruschke, 2014)-
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Bayes factors
Lee and Wagenmakers (2013)

(figure by Kelter, 2020)
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ROPE
Kruschke (2014)
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Bayesian hypothesis testing

Importantly, Bayesian hypothesis testing allows assessing the evidence both
for and against a hypothesis

Unlike with frequentist statistics, we can obtain support for equality between
conditions or groups (non-significant p-values are inconclusive)

·

·
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Bayesian statistics for bilingualism research

Bilingualism research is characterized by:·

Effects of different magnitudes in different groups

Prior information from previous studies, with either monolinguals or
bilinguals

Heterogeneity between and within individuals
(which can differ in different groups)

The use of many varied data types, tasks, and measures

Research questions about differences, as well as equality

-

-

-

-

-
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