Skip to main content

Department of Meteorology – University of Reading

Show access keys

Dr. Javier Amezcua

Visiting Research Fellow

ERROR: The page cannot be displayed (Trying to load: https://www.met.reading.ac.uk/~userdetails/dz904025/.html)

Centaur Publications

Jump to: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2009
Number of items: 25.

2024

Lee, J. C. K., Amezcua, J. and Bannister, R. N. ORCID: https://orcid.org/0000-0002-6846-8297 (2024) Variable-dependent and selective multivariate localization for ensemble-variational data assimilation in the tropics. Monthly Weather Review, 152 (4). pp. 1097-1118. ISSN 1520-0493 doi: https://doi.org/10.1175/MWR-D-23-0201.1

2023

Ayers, D. ORCID: https://orcid.org/0000-0002-5667-8174, Lau, J., Amezcua, J. ORCID: https://orcid.org/0000-0002-4952-8354, Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600 and Ojha, V. ORCID: https://orcid.org/0000-0002-9256-1192 (2023) Supervised machine learning to estimate instabilities in chaotic systems: estimation of local Lyapunov exponents. Quarterly Journal of the Royal Meteorological Society, 149 (753). pp. 1236-1262. ISSN 1477-870X doi: https://doi.org/10.1002/qj.4450

Amezcua, J. ORCID: https://orcid.org/0000-0002-4952-8354, Ren, H. ORCID: https://orcid.org/0000-0003-4342-3305 and Van Leeuwen, P. J. ORCID: https://orcid.org/0000-0003-2325-5340 (2023) Using the (iterative) ensemble Kalman smoother to estimate the time correlation in model error. Tellus A: Dynamic Meteorology and Oceanography, 75 (1). pp. 108-128. ISSN 1600-0870 doi: https://doi.org/10.16993/tellusa.55

2022

Lee, J. C. K., Amezcua, J. and Bannister, R. N. ORCID: https://orcid.org/0000-0002-6846-8297 (2022) Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework. Geoscientific Model Development, 15 (15). pp. 6197-6219. ISSN 1991-9603 doi: https://doi.org/10.5194/gmd-2022-3

2021

Amezcua, J. and Barton, Z. (2021) Assimilating atmospheric infrasound data to constrain atmospheric winds in a two-dimensional grid. Quarterly Journal of the Royal Meteorological Society, 147 (740). pp. 3530-3554. ISSN 1477-870X doi: https://doi.org/10.1002/qj.4141

Evensen, G., Amezcua, J., Bocquet, M., Carrassi, A. ORCID: https://orcid.org/0000-0003-0722-5600, Farchi, A., Fowler, A. ORCID: https://orcid.org/0000-0003-3650-3948, Houtekamer, P. L., Jones, C. K., de Moraes, R. J., Pulido, M., Sampson, C. and Vossepoel, F. C. (2021) An international initiative of predicting the Sars-Cov-2 pandemic using ensemble data assimilation. Foundations of Data Science, 3 (3). pp. 413-477. ISSN 2639-8001 doi: https://doi.org/10.3934/fods.2021001

Pinnington, E., Amezcua, J., Cooper, E., Dadson, S., Ellis, R., Peng, J., Robinson, E., Morrison, R., Osborne, S. and Quaife, T. ORCID: https://orcid.org/0000-0001-6896-4613 (2021) Improving soil moisture prediction of a high-resolution land surface model by parameterising pedotransfer functions through assimilation of SMAP satellite data. Hydrology and Earth System Sciences, 25 (3). pp. 1617-1641. ISSN 1027-5606 doi: https://doi.org/10.5194/hess-25-1617-2021

Ren, H., Amezcua, J. and Van Leeuwen, P. J. (2021) Effects of misspecified time-correlated model error in the (ensemble) Kalman Smoother. Quarterly Journal of the Royal Meteorological Society, 147 (734). pp. 573-588. ISSN 1477-870X doi: https://doi.org/10.1002/qj.3934

2020

Amezcua, J., Nasholm, P., Blixt, M. and Charlton-Perez, A. ORCID: https://orcid.org/0000-0001-8179-6220 (2020) Assimilation of atmospheric infrasound data to constrain tropospheric and stratospheric winds. Quarterly Journal of the Royal Meteorological Society, 146 (731). pp. 2634-2653. ISSN 1477-870X doi: https://doi.org/10.1002/qj.3809

2019

Skauvold, J., Eidsvik, J., Van Leeuwen, P. J. and Amezcua, J. (2019) A revised implicit equal-weights particle filter. Quarterly Journal of the Royal Meteorological Society, 145 (721). ISSN 1477-870X doi: https://doi.org/10.1002/qj.3506

2018

Amezcua, J. and Van Leeuwen, P. J. (2018) Time-correlated model error in the (ensemble) Kalman smoother. Quarterly Journal of the Royal Meteorological Society, 144 (717). pp. 2650-2665. ISSN 1477-870X doi: https://doi.org/10.1002/qj.3378

Chavez-Arroyo, R., Fernades-Correia, P., Lozano-Galiana, S., Sanz-Rodrigo, J., Amezcua, J. and Probst, O. (2018) A novel approach to statistical-dynamical downscaling for long-term wind resource predictions. Meteorological Applications, 25 (2). pp. 171-183. ISSN 1469-8080 doi: https://doi.org/10.1002/met.1678

2017

Goodliff, M., Amezcua, J. and Van Leeuwen, P. J. (2017) A weak-constraint 4DEnsembleVar. Part II: experiments with larger models. Tellus A, 69 (1). 1271565. ISSN 1600-0870 doi: https://doi.org/10.1080/16000870.2016.1271565

Amezcua, J., Goodliff, M. and Van Leeuwen, P. J. (2017) A weak-constraint 4DEnsembleVar. Part I: formulation and simple model experiments. Tellus A, 69 (1). 1271564. ISSN 1600-0870 doi: https://doi.org/10.1080/16000870.2016.1271564

2016

Zhu, M., Van Leeuwen, P. J. and Amezcua, J. (2016) Implicit equal-weights particle filter. Quarterly Journal of the Royal Meteorological Society. ISSN 0035-9009 doi: https://doi.org/10.1002/qj.2784

2015

Amezcua, J. and Williams, P. D. ORCID: https://orcid.org/0000-0002-9713-9820 (2015) The composite-tendency Robert–Asselin–Williams (RAW) filter in semi-implicit integrations. Quarterly Journal of the Royal Meteorological Society, 141 (688). pp. 764-773. ISSN 1477-870X doi: https://doi.org/10.1002/qj.2391

Goodliff, M., Amezcua, J. and Van Leeuwen, P. (2015) Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing nonlinearity. Tellus A, 67. ISSN 1600-0870 doi: https://doi.org/10.3402/tellusa.v67.26928

2014

Amezcua, J. and Van Leeuwen, P. (2014) Gaussian anamorphosis in the analysis step of the EnKF: a joint state-variable/observation approach. Tellus A, 66. 23493. ISSN 1600-0870 doi: https://doi.org/10.3402/tellusa.v66.23493

2013

Amezcua, J., Ide, K., Kalnay, E. and Reich, S. (2013) Ensemble transform Kalman-Bucy filters. Quarterly Journal of the Royal Meteorological Society, 140 (680). pp. 995-1004. ISSN 1477-870X doi: https://doi.org/10.1002/qj.2186

2012

Amezcua, J., Ide, K., Bishop, C. H. and Kalnay, E. (2012) Ensemble clustering in deterministic ensemble Kalman filters. Tellus A, 64. 18039. ISSN 1600-0870 doi: https://doi.org/10.3402/tellusa.v64i0.18039

Amezcua, J. (2012) Advances in sequential data assimilation and numerical weather forecasting: an Ensemble Transform Kalman-Bucy Filter, a study on clustering in deterministic Ensemble Square Root Filters, and a test of a new time stepping scheme in an atmospheric model. PhD thesis, University of Maryland.

2011

Amezcua, J., Munoz, R. and Probst, O. (2011) Reconstruction of gusty wind speed time series from autonomous data logger records. Wind & Structures, 14 (4). pp. 337-357. ISSN 1226-6116

Romo, A., Amezcua, J. and Probst, O. (2011) Validation of three new measure-correlate-predict models for the long-term prospection of the wind resource. Journal of Renewable and Sustainable Energy, 3 (2). 023105. ISSN 1941-7012 doi: https://doi.org/10.1063/1.3574447

Amezcua, J., Kalnay, E. and Williams, P. D. ORCID: https://orcid.org/0000-0002-9713-9820 (2011) The effects of the RAW filter on the climatology and forecast skill of the SPEEDY model. Monthly Weather Review, 139 (2). pp. 608-619. ISSN 0027-0644 doi: https://doi.org/10.1175/2010MWR3530.1

2009

Gallo, A., Gosch, R., Amezcua, J., Reyes, E. and Probst, O. (2009) Statistical evaluation of the early-stage development of Jatropha energy plantations in Northeastern Mexico. Intenational Journal of Global Warming, 1 (4). pp. 473-492. ISSN 1758-2091 doi: https://doi.org/10.1504/IJGW.2009.029218

This list was generated on Sat Dec 21 07:01:14 2024 UTC.

Last update: 12th December 2024

We use Javascript to improve your experience on reading.ac.uk, but it looks like yours is turned off. Everything will still work, but it is even more beautiful with Javascript in action. Find out more about why and how to turn it back on here.
We also use cookies to improve your time on the site, for more information please see our cookie policy.

Back to top